D. Maldonado, A. Cantudo, D.V. Guseinov, M.N. Koryazhkina, E.V. Okulich, D.I. Tetelbaum, N.O. Bartev, N.G. Danchenko, V.A. Pikar, A.V. Teterevkov, F. Jiménez-Molinos, A.N. Mikhaylov, J.B. Roldán
{"title":"辐射对Au/Ta/ZrO2(Y)/Pt/Ti忆阻器件影响的统计与建模研究","authors":"D. Maldonado, A. Cantudo, D.V. Guseinov, M.N. Koryazhkina, E.V. Okulich, D.I. Tetelbaum, N.O. Bartev, N.G. Danchenko, V.A. Pikar, A.V. Teterevkov, F. Jiménez-Molinos, A.N. Mikhaylov, J.B. Roldán","doi":"10.1016/j.chaos.2024.115909","DOIUrl":null,"url":null,"abstract":"In this study we have investigated the impact of the changes induced by ion irradiation on the performance and reliability of Au/Ta/ZrO<ce:inf loc=\"post\">2</ce:inf>(Y)/Pt/Ti memristive devices. A comprehensive experimental approach was employed, involving irradiation with various ion species, including H<ce:sup loc=\"post\">+</ce:sup>, Ne<ce:sup loc=\"post\">+</ce:sup>, O<ce:sup loc=\"post\">+</ce:sup>, and Kr<ce:sup loc=\"post\">+</ce:sup> to simulate different radiation environments. Thus, advanced statistical and modeling techniques to analyze the effects of irradiation on the resistive switching (RS) characteristics of the devices have been employed. Results revealed alterations in the post-irradiation RS parameters, including set and reset voltages and currents. These changes were found to depend on the ion species and dosage, with heavier ions such as Kr<ce:sup loc=\"post\">+</ce:sup> causing more pronounced effects. The findings are supported by detailed Monte Carlo simulations, which provided insights into the distribution of vacancies within the memristive devices under neutron irradiation. The experimental data, combined with the modeling results, indicate that RS is generally tolerant to radiation, although ion irradiation can lead to the formation of defect structures that affect the switching parameters of memristive devices.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"16 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A statistical and modeling study on the effects of radiation on Au/Ta/ZrO2(Y)/Pt/Ti memristive devices\",\"authors\":\"D. Maldonado, A. Cantudo, D.V. Guseinov, M.N. Koryazhkina, E.V. Okulich, D.I. Tetelbaum, N.O. Bartev, N.G. Danchenko, V.A. Pikar, A.V. Teterevkov, F. Jiménez-Molinos, A.N. Mikhaylov, J.B. Roldán\",\"doi\":\"10.1016/j.chaos.2024.115909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we have investigated the impact of the changes induced by ion irradiation on the performance and reliability of Au/Ta/ZrO<ce:inf loc=\\\"post\\\">2</ce:inf>(Y)/Pt/Ti memristive devices. A comprehensive experimental approach was employed, involving irradiation with various ion species, including H<ce:sup loc=\\\"post\\\">+</ce:sup>, Ne<ce:sup loc=\\\"post\\\">+</ce:sup>, O<ce:sup loc=\\\"post\\\">+</ce:sup>, and Kr<ce:sup loc=\\\"post\\\">+</ce:sup> to simulate different radiation environments. Thus, advanced statistical and modeling techniques to analyze the effects of irradiation on the resistive switching (RS) characteristics of the devices have been employed. Results revealed alterations in the post-irradiation RS parameters, including set and reset voltages and currents. These changes were found to depend on the ion species and dosage, with heavier ions such as Kr<ce:sup loc=\\\"post\\\">+</ce:sup> causing more pronounced effects. The findings are supported by detailed Monte Carlo simulations, which provided insights into the distribution of vacancies within the memristive devices under neutron irradiation. The experimental data, combined with the modeling results, indicate that RS is generally tolerant to radiation, although ion irradiation can lead to the formation of defect structures that affect the switching parameters of memristive devices.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2024.115909\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2024.115909","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A statistical and modeling study on the effects of radiation on Au/Ta/ZrO2(Y)/Pt/Ti memristive devices
In this study we have investigated the impact of the changes induced by ion irradiation on the performance and reliability of Au/Ta/ZrO2(Y)/Pt/Ti memristive devices. A comprehensive experimental approach was employed, involving irradiation with various ion species, including H+, Ne+, O+, and Kr+ to simulate different radiation environments. Thus, advanced statistical and modeling techniques to analyze the effects of irradiation on the resistive switching (RS) characteristics of the devices have been employed. Results revealed alterations in the post-irradiation RS parameters, including set and reset voltages and currents. These changes were found to depend on the ion species and dosage, with heavier ions such as Kr+ causing more pronounced effects. The findings are supported by detailed Monte Carlo simulations, which provided insights into the distribution of vacancies within the memristive devices under neutron irradiation. The experimental data, combined with the modeling results, indicate that RS is generally tolerant to radiation, although ion irradiation can lead to the formation of defect structures that affect the switching parameters of memristive devices.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.