2000-2022年北美细颗粒物化学成分的卫星、模型和监测:野火的变化贡献。

ACS ES&T Air Pub Date : 2024-11-11 eCollection Date: 2024-12-13 DOI:10.1021/acsestair.4c00151
Aaron van Donkelaar, Randall V Martin, Bonne Ford, Chi Li, Amanda J Pappin, Siyuan Shen, Dandan Zhang
{"title":"2000-2022年北美细颗粒物化学成分的卫星、模型和监测:野火的变化贡献。","authors":"Aaron van Donkelaar, Randall V Martin, Bonne Ford, Chi Li, Amanda J Pappin, Siyuan Shen, Dandan Zhang","doi":"10.1021/acsestair.4c00151","DOIUrl":null,"url":null,"abstract":"<p><p>Air quality management benefits from an in-depth understanding of the emissions associated with, and composition of, local PM<sub>2.5</sub> concentrations. Here, we investigate the changing role of biomass burning emissions to North American PM<sub>2.5</sub> exposure by combining multiple satellite-, ground-, and simulation-based data sets biweekly at a 0.01° × 0.01° resolution from 2000 to 2022. We also developed a Buffered Leave Cluster Out (BLeCO) method to address autocorrelation and computational cost in cross-validation. Biomass burning emissions contribute an increasingly large fraction to PM<sub>2.5</sub> exposure in the United States and Canada, with national annual population-weighted mean contributions increasing from 0.4 μg/m<sup>3</sup> (3-5%) in 2000-2004 to 0.8-0.9 μg/m<sup>3</sup> (9-14%) by 2019-2022, led by western North American 2019-2022 annual contributions of 1.4-1.9 μg/m<sup>3</sup> (15-27%) and maximum seasonal contributions of 3.3-5.5 μg/m<sup>3</sup> (29-49%). Other components such as nonbiomass burning Organic Matter (OM) and nitrate can be regionally as (or more) important, albeit with distinct seasonal variability. The contribution of total OM to PM<sub>2.5</sub> exposure in the United States in 2016-2022 is 42.2%, comparable to all other anthropogenically sourced components combined. Comparison of BLeCO and random 10-fold cross-validation suggests that random 10-fold cross-validation may significantly underrepresent true uncertainty for total PM<sub>2.5</sub> concentrations due to the clustered nature of PM<sub>2.5</sub> ground-based monitoring.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"1 12","pages":"1589-1600"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651298/pdf/","citationCount":"0","resultStr":"{\"title\":\"North American Fine Particulate Matter Chemical Composition for 2000-2022 from Satellites, Models, and Monitors: The Changing Contribution of Wildfires.\",\"authors\":\"Aaron van Donkelaar, Randall V Martin, Bonne Ford, Chi Li, Amanda J Pappin, Siyuan Shen, Dandan Zhang\",\"doi\":\"10.1021/acsestair.4c00151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Air quality management benefits from an in-depth understanding of the emissions associated with, and composition of, local PM<sub>2.5</sub> concentrations. Here, we investigate the changing role of biomass burning emissions to North American PM<sub>2.5</sub> exposure by combining multiple satellite-, ground-, and simulation-based data sets biweekly at a 0.01° × 0.01° resolution from 2000 to 2022. We also developed a Buffered Leave Cluster Out (BLeCO) method to address autocorrelation and computational cost in cross-validation. Biomass burning emissions contribute an increasingly large fraction to PM<sub>2.5</sub> exposure in the United States and Canada, with national annual population-weighted mean contributions increasing from 0.4 μg/m<sup>3</sup> (3-5%) in 2000-2004 to 0.8-0.9 μg/m<sup>3</sup> (9-14%) by 2019-2022, led by western North American 2019-2022 annual contributions of 1.4-1.9 μg/m<sup>3</sup> (15-27%) and maximum seasonal contributions of 3.3-5.5 μg/m<sup>3</sup> (29-49%). Other components such as nonbiomass burning Organic Matter (OM) and nitrate can be regionally as (or more) important, albeit with distinct seasonal variability. The contribution of total OM to PM<sub>2.5</sub> exposure in the United States in 2016-2022 is 42.2%, comparable to all other anthropogenically sourced components combined. Comparison of BLeCO and random 10-fold cross-validation suggests that random 10-fold cross-validation may significantly underrepresent true uncertainty for total PM<sub>2.5</sub> concentrations due to the clustered nature of PM<sub>2.5</sub> ground-based monitoring.</p>\",\"PeriodicalId\":100014,\"journal\":{\"name\":\"ACS ES&T Air\",\"volume\":\"1 12\",\"pages\":\"1589-1600\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651298/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T Air\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsestair.4c00151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/13 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestair.4c00151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深入了解与当地PM2.5浓度相关的排放及其组成有利于空气质量管理。在这里,我们通过结合多个卫星、地面和基于模拟的数据集,从2000年到2022年,每两周以0.01°× 0.01°分辨率研究生物质燃烧排放对北美PM2.5暴露的变化作用。我们还开发了一种缓冲离开聚类(BLeCO)方法来解决交叉验证中的自相关和计算成本问题。在美国和加拿大,生物质燃烧排放对PM2.5暴露的贡献越来越大,全国人口加权年平均贡献从2000-2004年的0.4 μg/m3(3-5%)增加到2019-2022年的0.8-0.9 μg/m3(9-14%),北美西部地区2019-2022年的年贡献为1.4-1.9 μg/m3(15-27%),最大季节性贡献为3.3-5.5 μg/m3(29-49%)。其他成分,如非生物质燃烧有机质(OM)和硝酸盐,在区域上同样(或更)重要,尽管具有明显的季节变化。在2016-2022年期间,美国总颗粒物对PM2.5暴露的贡献为42.2%,与所有其他人为来源成分的总和相当。BLeCO和随机10倍交叉验证的比较表明,由于PM2.5地面监测的聚类性质,随机10倍交叉验证可能严重低估了PM2.5总浓度的真实不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
North American Fine Particulate Matter Chemical Composition for 2000-2022 from Satellites, Models, and Monitors: The Changing Contribution of Wildfires.

Air quality management benefits from an in-depth understanding of the emissions associated with, and composition of, local PM2.5 concentrations. Here, we investigate the changing role of biomass burning emissions to North American PM2.5 exposure by combining multiple satellite-, ground-, and simulation-based data sets biweekly at a 0.01° × 0.01° resolution from 2000 to 2022. We also developed a Buffered Leave Cluster Out (BLeCO) method to address autocorrelation and computational cost in cross-validation. Biomass burning emissions contribute an increasingly large fraction to PM2.5 exposure in the United States and Canada, with national annual population-weighted mean contributions increasing from 0.4 μg/m3 (3-5%) in 2000-2004 to 0.8-0.9 μg/m3 (9-14%) by 2019-2022, led by western North American 2019-2022 annual contributions of 1.4-1.9 μg/m3 (15-27%) and maximum seasonal contributions of 3.3-5.5 μg/m3 (29-49%). Other components such as nonbiomass burning Organic Matter (OM) and nitrate can be regionally as (or more) important, albeit with distinct seasonal variability. The contribution of total OM to PM2.5 exposure in the United States in 2016-2022 is 42.2%, comparable to all other anthropogenically sourced components combined. Comparison of BLeCO and random 10-fold cross-validation suggests that random 10-fold cross-validation may significantly underrepresent true uncertainty for total PM2.5 concentrations due to the clustered nature of PM2.5 ground-based monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信