Kumar Utkarsh, Namita Srivastava, Christopher Papayannakos, Ashima Nayyar, Azhar Khan, Shabirul Haque
{"title":"打破沉默:细胞外囊泡在子宫内膜异位症诊断和治疗中的作用。","authors":"Kumar Utkarsh, Namita Srivastava, Christopher Papayannakos, Ashima Nayyar, Azhar Khan, Shabirul Haque","doi":"10.20517/evcna.2023.43","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-to-cell communication is believed to be facilitated by membrane-bound vesicles called extracellular vesicles (EVs), which are released by cells. Protein, lipids, and nucleic acids are major cargo of EVs and are transported in these vesicles. Depending on the parent and recipient cell types, they can affect a wide variety of biological processes in the tissues to which they are delivered. EVs are essential for embryo implantation and endometriosis, and they are located in the uterine cavities of different species, where they promote blastocyst and endometrial preparation for implantation. This review focuses on what is currently understood regarding pathologic and diagnostic characteristics, and the potential therapeutic value of EVs in the context of endometriosis, where they can be used for drug delivery and targeted therapy due to their ability to carry bioactive molecules to specific cells or tissues. The findings of this review highlight the potential for a wide range of clinical applications that involve endometrial EVs in the areas of treatment, such as surgical and pharmacological, diagnostic biomarker development, and drug delivery systems, all with the ultimate goal of improving pregnancy success rates.</p>","PeriodicalId":520322,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"4 4","pages":"599-614"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648450/pdf/","citationCount":"0","resultStr":"{\"title\":\"Breaking the silence: The role of extracellular vesicles in unraveling the diagnosis and treatment of endometriosis.\",\"authors\":\"Kumar Utkarsh, Namita Srivastava, Christopher Papayannakos, Ashima Nayyar, Azhar Khan, Shabirul Haque\",\"doi\":\"10.20517/evcna.2023.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell-to-cell communication is believed to be facilitated by membrane-bound vesicles called extracellular vesicles (EVs), which are released by cells. Protein, lipids, and nucleic acids are major cargo of EVs and are transported in these vesicles. Depending on the parent and recipient cell types, they can affect a wide variety of biological processes in the tissues to which they are delivered. EVs are essential for embryo implantation and endometriosis, and they are located in the uterine cavities of different species, where they promote blastocyst and endometrial preparation for implantation. This review focuses on what is currently understood regarding pathologic and diagnostic characteristics, and the potential therapeutic value of EVs in the context of endometriosis, where they can be used for drug delivery and targeted therapy due to their ability to carry bioactive molecules to specific cells or tissues. The findings of this review highlight the potential for a wide range of clinical applications that involve endometrial EVs in the areas of treatment, such as surgical and pharmacological, diagnostic biomarker development, and drug delivery systems, all with the ultimate goal of improving pregnancy success rates.</p>\",\"PeriodicalId\":520322,\"journal\":{\"name\":\"Extracellular vesicles and circulating nucleic acids\",\"volume\":\"4 4\",\"pages\":\"599-614\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648450/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extracellular vesicles and circulating nucleic acids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/evcna.2023.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracellular vesicles and circulating nucleic acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/evcna.2023.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Breaking the silence: The role of extracellular vesicles in unraveling the diagnosis and treatment of endometriosis.
Cell-to-cell communication is believed to be facilitated by membrane-bound vesicles called extracellular vesicles (EVs), which are released by cells. Protein, lipids, and nucleic acids are major cargo of EVs and are transported in these vesicles. Depending on the parent and recipient cell types, they can affect a wide variety of biological processes in the tissues to which they are delivered. EVs are essential for embryo implantation and endometriosis, and they are located in the uterine cavities of different species, where they promote blastocyst and endometrial preparation for implantation. This review focuses on what is currently understood regarding pathologic and diagnostic characteristics, and the potential therapeutic value of EVs in the context of endometriosis, where they can be used for drug delivery and targeted therapy due to their ability to carry bioactive molecules to specific cells or tissues. The findings of this review highlight the potential for a wide range of clinical applications that involve endometrial EVs in the areas of treatment, such as surgical and pharmacological, diagnostic biomarker development, and drug delivery systems, all with the ultimate goal of improving pregnancy success rates.