自适应分步磁共振引导腹部放射治疗的个性化深度学习自动分割模型。

IF 3.2 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Medical physics Pub Date : 2024-12-19 DOI:10.1002/mp.17580
Maria Kawula, Sebastian Marschner, Chengtao Wei, Marvin F. Ribeiro, Stefanie Corradini, Claus Belka, Guillaume Landry, Christopher Kurz
{"title":"自适应分步磁共振引导腹部放射治疗的个性化深度学习自动分割模型。","authors":"Maria Kawula,&nbsp;Sebastian Marschner,&nbsp;Chengtao Wei,&nbsp;Marvin F. Ribeiro,&nbsp;Stefanie Corradini,&nbsp;Claus Belka,&nbsp;Guillaume Landry,&nbsp;Christopher Kurz","doi":"10.1002/mp.17580","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Manual contour corrections during fractionated magnetic resonance (MR)-guided radiotherapy (MRgRT) are time-consuming. Conventional population models for deep learning auto-segmentation might be suboptimal for MRgRT at MR-Linacs since they do not incorporate manual segmentation from treatment planning and previous fractions.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>In this work, we investigate patient-specific (PS) auto-segmentation methods leveraging expert-segmented planning and prior fraction MR images (MRIs) to improve auto-segmentation on consecutive treatment days.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>Data from 151 abdominal cancer patients treated at a 0.35 T MR-Linac (151 planning and 215 fraction MRIs) were included. Population baseline models (BMs) were trained on 107 planning MRIs for one-class segmentation of the aorta, bowel, duodenum, kidneys, liver, spinal canal, and stomach. PS models were obtained by fine-tuning the BMs using the planning MRI (<span></span><math>\n <semantics>\n <msub>\n <mtext>PS</mtext>\n <mi>BM</mi>\n </msub>\n <annotation>$\\text{PS}_{\\mathrm{BM}}$</annotation>\n </semantics></math>). Maximal improvement by continuously updating the PS models was investigated by adding the first four out of five fraction MRIs (<span></span><math>\n <semantics>\n <msubsup>\n <mtext>PS</mtext>\n <mi>BM</mi>\n <mo>F4</mo>\n </msubsup>\n <annotation>$\\text{PS}_{\\mathrm{BM}}^{\\operatorname{F4}}$</annotation>\n </semantics></math>). Similarly, PS models without BM were trained (<span></span><math>\n <semantics>\n <msub>\n <mtext>PS</mtext>\n <mrow>\n <mi>no</mi>\n <mi>BM</mi>\n </mrow>\n </msub>\n <annotation>$\\text{PS}_{\\mathrm{no BM}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msubsup>\n <mtext>PS</mtext>\n <mrow>\n <mi>no</mi>\n <mi>BM</mi>\n </mrow>\n <mo>F4</mo>\n </msubsup>\n <annotation>$\\text{PS}_{\\mathrm{no BM}}^{\\operatorname{F4}}$</annotation>\n </semantics></math>). All hyperparameters were optimized using 23 patients, and the methods were tested on the remaining 21 patients. Evaluation involved Dice similarity coefficient (DSC), average (<span></span><math>\n <semantics>\n <msub>\n <mtext>HD</mtext>\n <mi>avg</mi>\n </msub>\n <annotation>$\\text{HD}_{\\rm avg}$</annotation>\n </semantics></math>) and the 95<sup>th</sup> percentile (HD<sub>95</sub>) Hausdorff distance. A qualitative contour assessment by a radiation oncologist was performed for BM, <span></span><math>\n <semantics>\n <msub>\n <mtext>PS</mtext>\n <mi>BM</mi>\n </msub>\n <annotation>$\\text{PS}_{\\mathrm{BM}}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <msub>\n <mtext>PS</mtext>\n <mrow>\n <mi>no</mi>\n <mi>BM</mi>\n </mrow>\n </msub>\n <annotation>$\\text{PS}_{\\mathrm{no BM}}$</annotation>\n </semantics></math>.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p><span></span><math>\n <semantics>\n <msubsup>\n <mtext>PS</mtext>\n <mi>BM</mi>\n <mo>F4</mo>\n </msubsup>\n <annotation>$\\text{PS}_{\\mathrm{BM}}^{\\operatorname{F4}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mtext>PS</mtext>\n <mi>BM</mi>\n </msub>\n <annotation>$\\text{PS}_{\\mathrm{BM}}$</annotation>\n </semantics></math> networks had the best geometric performance. <span></span><math>\n <semantics>\n <msub>\n <mtext>PS</mtext>\n <mrow>\n <mi>no</mi>\n <mi>BM</mi>\n </mrow>\n </msub>\n <annotation>$\\text{PS}_{\\mathrm{no BM}}$</annotation>\n </semantics></math> and BMs showed similar DSC and HDs values, however <span></span><math>\n <semantics>\n <msubsup>\n <mtext>PS</mtext>\n <mrow>\n <mi>no</mi>\n <mi>BM</mi>\n </mrow>\n <mo>F4</mo>\n </msubsup>\n <annotation>$\\text{PS}_{\\mathrm{no BM}}^{\\operatorname{F4}}$</annotation>\n </semantics></math> models outperformed BMs. <span></span><math>\n <semantics>\n <msub>\n <mtext>PS</mtext>\n <mi>BM</mi>\n </msub>\n <annotation>$\\text{PS}_{\\mathrm{BM}}$</annotation>\n </semantics></math> predictions scored the best in the qualitative evaluation, followed by the BMs and <span></span><math>\n <semantics>\n <msub>\n <mtext>PS</mtext>\n <mrow>\n <mi>no</mi>\n <mi>BM</mi>\n </mrow>\n </msub>\n <annotation>$\\text{PS}_{\\mathrm{no BM}}$</annotation>\n </semantics></math> models.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Personalized auto-segmentation models outperformed the population BMs. In most cases, <span></span><math>\n <semantics>\n <msub>\n <mtext>PS</mtext>\n <mi>BM</mi>\n </msub>\n <annotation>$\\text{PS}_{\\mathrm{BM}}$</annotation>\n </semantics></math> delineations were judged to be directly usable for treatment adaptation without further corrections, suggesting a potential time saving during fractionated treatment.</p>\n </section>\n </div>","PeriodicalId":18384,"journal":{"name":"Medical physics","volume":"52 4","pages":"2295-2304"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mp.17580","citationCount":"0","resultStr":"{\"title\":\"Personalized deep learning auto-segmentation models for adaptive fractionated magnetic resonance-guided radiation therapy of the abdomen\",\"authors\":\"Maria Kawula,&nbsp;Sebastian Marschner,&nbsp;Chengtao Wei,&nbsp;Marvin F. Ribeiro,&nbsp;Stefanie Corradini,&nbsp;Claus Belka,&nbsp;Guillaume Landry,&nbsp;Christopher Kurz\",\"doi\":\"10.1002/mp.17580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Manual contour corrections during fractionated magnetic resonance (MR)-guided radiotherapy (MRgRT) are time-consuming. Conventional population models for deep learning auto-segmentation might be suboptimal for MRgRT at MR-Linacs since they do not incorporate manual segmentation from treatment planning and previous fractions.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Purpose</h3>\\n \\n <p>In this work, we investigate patient-specific (PS) auto-segmentation methods leveraging expert-segmented planning and prior fraction MR images (MRIs) to improve auto-segmentation on consecutive treatment days.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Materials and Methods</h3>\\n \\n <p>Data from 151 abdominal cancer patients treated at a 0.35 T MR-Linac (151 planning and 215 fraction MRIs) were included. Population baseline models (BMs) were trained on 107 planning MRIs for one-class segmentation of the aorta, bowel, duodenum, kidneys, liver, spinal canal, and stomach. PS models were obtained by fine-tuning the BMs using the planning MRI (<span></span><math>\\n <semantics>\\n <msub>\\n <mtext>PS</mtext>\\n <mi>BM</mi>\\n </msub>\\n <annotation>$\\\\text{PS}_{\\\\mathrm{BM}}$</annotation>\\n </semantics></math>). Maximal improvement by continuously updating the PS models was investigated by adding the first four out of five fraction MRIs (<span></span><math>\\n <semantics>\\n <msubsup>\\n <mtext>PS</mtext>\\n <mi>BM</mi>\\n <mo>F4</mo>\\n </msubsup>\\n <annotation>$\\\\text{PS}_{\\\\mathrm{BM}}^{\\\\operatorname{F4}}$</annotation>\\n </semantics></math>). Similarly, PS models without BM were trained (<span></span><math>\\n <semantics>\\n <msub>\\n <mtext>PS</mtext>\\n <mrow>\\n <mi>no</mi>\\n <mi>BM</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\text{PS}_{\\\\mathrm{no BM}}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msubsup>\\n <mtext>PS</mtext>\\n <mrow>\\n <mi>no</mi>\\n <mi>BM</mi>\\n </mrow>\\n <mo>F4</mo>\\n </msubsup>\\n <annotation>$\\\\text{PS}_{\\\\mathrm{no BM}}^{\\\\operatorname{F4}}$</annotation>\\n </semantics></math>). All hyperparameters were optimized using 23 patients, and the methods were tested on the remaining 21 patients. Evaluation involved Dice similarity coefficient (DSC), average (<span></span><math>\\n <semantics>\\n <msub>\\n <mtext>HD</mtext>\\n <mi>avg</mi>\\n </msub>\\n <annotation>$\\\\text{HD}_{\\\\rm avg}$</annotation>\\n </semantics></math>) and the 95<sup>th</sup> percentile (HD<sub>95</sub>) Hausdorff distance. A qualitative contour assessment by a radiation oncologist was performed for BM, <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>PS</mtext>\\n <mi>BM</mi>\\n </msub>\\n <annotation>$\\\\text{PS}_{\\\\mathrm{BM}}$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>PS</mtext>\\n <mrow>\\n <mi>no</mi>\\n <mi>BM</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\text{PS}_{\\\\mathrm{no BM}}$</annotation>\\n </semantics></math>.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p><span></span><math>\\n <semantics>\\n <msubsup>\\n <mtext>PS</mtext>\\n <mi>BM</mi>\\n <mo>F4</mo>\\n </msubsup>\\n <annotation>$\\\\text{PS}_{\\\\mathrm{BM}}^{\\\\operatorname{F4}}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>PS</mtext>\\n <mi>BM</mi>\\n </msub>\\n <annotation>$\\\\text{PS}_{\\\\mathrm{BM}}$</annotation>\\n </semantics></math> networks had the best geometric performance. <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>PS</mtext>\\n <mrow>\\n <mi>no</mi>\\n <mi>BM</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\text{PS}_{\\\\mathrm{no BM}}$</annotation>\\n </semantics></math> and BMs showed similar DSC and HDs values, however <span></span><math>\\n <semantics>\\n <msubsup>\\n <mtext>PS</mtext>\\n <mrow>\\n <mi>no</mi>\\n <mi>BM</mi>\\n </mrow>\\n <mo>F4</mo>\\n </msubsup>\\n <annotation>$\\\\text{PS}_{\\\\mathrm{no BM}}^{\\\\operatorname{F4}}$</annotation>\\n </semantics></math> models outperformed BMs. <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>PS</mtext>\\n <mi>BM</mi>\\n </msub>\\n <annotation>$\\\\text{PS}_{\\\\mathrm{BM}}$</annotation>\\n </semantics></math> predictions scored the best in the qualitative evaluation, followed by the BMs and <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>PS</mtext>\\n <mrow>\\n <mi>no</mi>\\n <mi>BM</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\text{PS}_{\\\\mathrm{no BM}}$</annotation>\\n </semantics></math> models.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Personalized auto-segmentation models outperformed the population BMs. In most cases, <span></span><math>\\n <semantics>\\n <msub>\\n <mtext>PS</mtext>\\n <mi>BM</mi>\\n </msub>\\n <annotation>$\\\\text{PS}_{\\\\mathrm{BM}}$</annotation>\\n </semantics></math> delineations were judged to be directly usable for treatment adaptation without further corrections, suggesting a potential time saving during fractionated treatment.</p>\\n </section>\\n </div>\",\"PeriodicalId\":18384,\"journal\":{\"name\":\"Medical physics\",\"volume\":\"52 4\",\"pages\":\"2295-2304\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mp.17580\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mp.17580\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mp.17580","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:分次磁共振(MR)引导放射治疗(MRgRT)过程中的手动轮廓校正非常耗时。目的:在这项工作中,我们研究了患者特异性(PS)自动分割方法,利用专家分割的计划和先前的分次磁共振图像(MRI)来改善连续治疗日的自动分割:纳入了在 0.35 T MR-Linac 治疗的 151 名腹部癌症患者的数据(151 个规划和 215 个分段 MRI)。在 107 个规划 MRI 上训练了群体基线模型 (BM),以便对主动脉、肠、十二指肠、肾、肝、椎管和胃进行单类分割。通过使用规划 MRI 对 BM 进行微调,得到 PS 模型(PS BM $\text{PS}_{mathrm{BM}}$ )。通过添加五次分数 MRI 中的前四次(PS BM F4 $\text{PS}_\mathrm{BM}}^{operatorname{F4}}$ ),研究了持续更新 PS 模型所能带来的最大改进。同样,我们也训练了没有 BM 的 PS 模型(PS no BM $\text{PS}_{\mathrm{no BM}}$ 和 PS no BM F4 $\text{PS}_{\mathrm{no BM}}^{\operatorname{F4}}$ )。所有超参数都在 23 位患者身上进行了优化,并在其余 21 位患者身上对这些方法进行了测试。评估包括戴斯相似系数(DSC)、平均值(HD avg $\text{HD}_{\rm avg}$)和第95百分位数(HD95)豪斯多夫距离。放射肿瘤学家对 BM、PS BM $\text{PS}_{mathrm{BM}}$ 和 PS no BM $\text{PS}_{mathrm{no BM}}$ 进行了定性轮廓评估: PS BM F4 $\text{PS}_{mathrm{BM}}^{\operatorname{F4}}$ 和 PS BM $\text{PS}_{mathrm{BM}}$ 网络的几何性能最好。 PS no BM $\text{PS}_{mathrm{no BM}}$ 和 BM 显示了相似的 DSC 和 HDs 值,但是 PS no BM F4 $\text{PS}_{mathrm{no BM}}^{\operatorname{F4}}$ 模型的表现优于 BM。 PS BM $\text{PS}_{mathrm{BM}$ 预测在定性评估中得分最高,其次是 BMs 和 PS no BM $\text{PS}_\{mathrm{no BM}}$ 模型:结论:个性化自动分割模型的表现优于群体 BMs。在大多数情况下,PS BM $\text{PS}_\mathrm{BM}}$的划分被判定为可直接用于治疗调整而无需进一步修正,这表明在分层治疗过程中可能会节省时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Personalized deep learning auto-segmentation models for adaptive fractionated magnetic resonance-guided radiation therapy of the abdomen

Personalized deep learning auto-segmentation models for adaptive fractionated magnetic resonance-guided radiation therapy of the abdomen

Background

Manual contour corrections during fractionated magnetic resonance (MR)-guided radiotherapy (MRgRT) are time-consuming. Conventional population models for deep learning auto-segmentation might be suboptimal for MRgRT at MR-Linacs since they do not incorporate manual segmentation from treatment planning and previous fractions.

Purpose

In this work, we investigate patient-specific (PS) auto-segmentation methods leveraging expert-segmented planning and prior fraction MR images (MRIs) to improve auto-segmentation on consecutive treatment days.

Materials and Methods

Data from 151 abdominal cancer patients treated at a 0.35 T MR-Linac (151 planning and 215 fraction MRIs) were included. Population baseline models (BMs) were trained on 107 planning MRIs for one-class segmentation of the aorta, bowel, duodenum, kidneys, liver, spinal canal, and stomach. PS models were obtained by fine-tuning the BMs using the planning MRI ( PS BM $\text{PS}_{\mathrm{BM}}$ ). Maximal improvement by continuously updating the PS models was investigated by adding the first four out of five fraction MRIs ( PS BM F4 $\text{PS}_{\mathrm{BM}}^{\operatorname{F4}}$ ). Similarly, PS models without BM were trained ( PS no BM $\text{PS}_{\mathrm{no BM}}$ and PS no BM F4 $\text{PS}_{\mathrm{no BM}}^{\operatorname{F4}}$ ). All hyperparameters were optimized using 23 patients, and the methods were tested on the remaining 21 patients. Evaluation involved Dice similarity coefficient (DSC), average ( HD avg $\text{HD}_{\rm avg}$ ) and the 95th percentile (HD95) Hausdorff distance. A qualitative contour assessment by a radiation oncologist was performed for BM, PS BM $\text{PS}_{\mathrm{BM}}$ , and PS no BM $\text{PS}_{\mathrm{no BM}}$ .

Results

PS BM F4 $\text{PS}_{\mathrm{BM}}^{\operatorname{F4}}$ and PS BM $\text{PS}_{\mathrm{BM}}$ networks had the best geometric performance. PS no BM $\text{PS}_{\mathrm{no BM}}$ and BMs showed similar DSC and HDs values, however PS no BM F4 $\text{PS}_{\mathrm{no BM}}^{\operatorname{F4}}$ models outperformed BMs. PS BM $\text{PS}_{\mathrm{BM}}$ predictions scored the best in the qualitative evaluation, followed by the BMs and PS no BM $\text{PS}_{\mathrm{no BM}}$  models.

Conclusion

Personalized auto-segmentation models outperformed the population BMs. In most cases, PS BM $\text{PS}_{\mathrm{BM}}$ delineations were judged to be directly usable for treatment adaptation without further corrections, suggesting a potential time saving during fractionated treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical physics
Medical physics 医学-核医学
CiteScore
6.80
自引率
15.80%
发文量
660
审稿时长
1.7 months
期刊介绍: Medical Physics publishes original, high impact physics, imaging science, and engineering research that advances patient diagnosis and therapy through contributions in 1) Basic science developments with high potential for clinical translation 2) Clinical applications of cutting edge engineering and physics innovations 3) Broadly applicable and innovative clinical physics developments Medical Physics is a journal of global scope and reach. By publishing in Medical Physics your research will reach an international, multidisciplinary audience including practicing medical physicists as well as physics- and engineering based translational scientists. We work closely with authors of promising articles to improve their quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信