使用随机生存森林模型预测丙型肝炎病毒持续病毒学反应后的肝细胞癌

IF 3.3 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2024-12-01 Epub Date: 2024-12-18 DOI:10.1200/CCI.24.00108
Hikaru Nakahara, Atsushi Ono, C Nelson Hayes, Yuki Shirane, Ryoichi Miura, Yasutoshi Fujii, Serami Murakami, Kenji Yamaoka, Hauri Bao, Shinsuke Uchikawa, Hatsue Fujino, Eisuke Murakami, Tomokazu Kawaoka, Daiki Miki, Masataka Tsuge, Shiro Oka
{"title":"使用随机生存森林模型预测丙型肝炎病毒持续病毒学反应后的肝细胞癌","authors":"Hikaru Nakahara, Atsushi Ono, C Nelson Hayes, Yuki Shirane, Ryoichi Miura, Yasutoshi Fujii, Serami Murakami, Kenji Yamaoka, Hauri Bao, Shinsuke Uchikawa, Hatsue Fujino, Eisuke Murakami, Tomokazu Kawaoka, Daiki Miki, Masataka Tsuge, Shiro Oka","doi":"10.1200/CCI.24.00108","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Postsustained virologic response (SVR) screening following clinical guidelines does not address individual risk of hepatocellular carcinoma (HCC). Our aim is to provide tailored screening for patients using machine learning to predict HCC incidence after SVR.</p><p><strong>Methods: </strong>Using clinical data from 1,028 SVR patients, we developed an HCC prediction model using a random survival forest (RSF). Model performance was assessed using Harrel's c-index and validated in an independent cohort of 737 SVR patients. Shapley additive explanation (SHAP) facilitated feature quantification, whereas optimal cutoffs were determined using maximally selected rank statistics. We used Kaplan-Meier analysis to compare cumulative HCC incidence between risk groups.</p><p><strong>Results: </strong>We achieved c-index scores and 95% CIs of 0.90 (0.85 to 0.94) and 0.80 (0.74 to 0.85) in the derivation and validation cohorts, respectively, in a model using platelet count, gamma-glutamyl transpeptidase, sex, age, and ALT. Stratification resulted in four risk groups: low, intermediate, high, and very high. The 5-year cumulative HCC incidence rates and 95% CIs for these groups were as follows: derivation: 0% (0 to 0), 3.8% (0.6 to 6.8), 26.2% (17.2 to 34.3), and 54.2% (20.2 to 73.7), respectively, and validation: 0.7% (0 to 1.6), 7.1% (2.7 to 11.3), 5.2% (0 to 10.8), and 28.6% (0 to 55.3), respectively.</p><p><strong>Conclusion: </strong>The integration of RSF and SHAP enabled accurate HCC risk classification after SVR, which may facilitate individualized HCC screening strategies and more cost-effective care.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"8 ","pages":"e2400108"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Hepatocellular Carcinoma After Hepatitis C Virus Sustained Virologic Response Using a Random Survival Forest Model.\",\"authors\":\"Hikaru Nakahara, Atsushi Ono, C Nelson Hayes, Yuki Shirane, Ryoichi Miura, Yasutoshi Fujii, Serami Murakami, Kenji Yamaoka, Hauri Bao, Shinsuke Uchikawa, Hatsue Fujino, Eisuke Murakami, Tomokazu Kawaoka, Daiki Miki, Masataka Tsuge, Shiro Oka\",\"doi\":\"10.1200/CCI.24.00108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Postsustained virologic response (SVR) screening following clinical guidelines does not address individual risk of hepatocellular carcinoma (HCC). Our aim is to provide tailored screening for patients using machine learning to predict HCC incidence after SVR.</p><p><strong>Methods: </strong>Using clinical data from 1,028 SVR patients, we developed an HCC prediction model using a random survival forest (RSF). Model performance was assessed using Harrel's c-index and validated in an independent cohort of 737 SVR patients. Shapley additive explanation (SHAP) facilitated feature quantification, whereas optimal cutoffs were determined using maximally selected rank statistics. We used Kaplan-Meier analysis to compare cumulative HCC incidence between risk groups.</p><p><strong>Results: </strong>We achieved c-index scores and 95% CIs of 0.90 (0.85 to 0.94) and 0.80 (0.74 to 0.85) in the derivation and validation cohorts, respectively, in a model using platelet count, gamma-glutamyl transpeptidase, sex, age, and ALT. Stratification resulted in four risk groups: low, intermediate, high, and very high. The 5-year cumulative HCC incidence rates and 95% CIs for these groups were as follows: derivation: 0% (0 to 0), 3.8% (0.6 to 6.8), 26.2% (17.2 to 34.3), and 54.2% (20.2 to 73.7), respectively, and validation: 0.7% (0 to 1.6), 7.1% (2.7 to 11.3), 5.2% (0 to 10.8), and 28.6% (0 to 55.3), respectively.</p><p><strong>Conclusion: </strong>The integration of RSF and SHAP enabled accurate HCC risk classification after SVR, which may facilitate individualized HCC screening strategies and more cost-effective care.</p>\",\"PeriodicalId\":51626,\"journal\":{\"name\":\"JCO Clinical Cancer Informatics\",\"volume\":\"8 \",\"pages\":\"e2400108\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO Clinical Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1200/CCI.24.00108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.24.00108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:临床指南下的持续后病毒学反应(SVR)筛查并不能解决肝细胞癌(HCC)的个体风险。我们的目标是使用机器学习为患者提供量身定制的筛查,以预测SVR后HCC的发病率。方法:利用1028例SVR患者的临床数据,我们建立了一个使用随机生存森林(RSF)的HCC预测模型。采用Harrel’s c指数评估模型的性能,并在737例SVR患者的独立队列中进行验证。Shapley加性解释(SHAP)有助于特征量化,而最佳截止点是使用最大选择的秩统计来确定的。我们使用Kaplan-Meier分析比较不同危险组间HCC的累积发病率。结果:在使用血小板计数、γ -谷氨酰转肽酶、性别、年龄和ALT的模型中,我们在衍生和验证队列中分别获得了0.90(0.85至0.94)和0.80(0.74至0.85)的c指数评分和95% ci。分层产生了四个风险组:低、中、高和非常高。这些组的5年累积HCC发病率和95% ci分别为:推导:0%(0 ~ 0)、3.8%(0.6 ~ 6.8)、26.2%(17.2 ~ 34.3)和54.2%(20.2 ~ 73.7),验证:0.7%(0 ~ 1.6)、7.1%(2.7 ~ 11.3)、5.2%(0 ~ 10.8)和28.6%(0 ~ 55.3)。结论:RSF和SHAP的结合可实现SVR后HCC风险的准确分类,有助于制定个性化的HCC筛查策略,提高治疗的成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Hepatocellular Carcinoma After Hepatitis C Virus Sustained Virologic Response Using a Random Survival Forest Model.

Purpose: Postsustained virologic response (SVR) screening following clinical guidelines does not address individual risk of hepatocellular carcinoma (HCC). Our aim is to provide tailored screening for patients using machine learning to predict HCC incidence after SVR.

Methods: Using clinical data from 1,028 SVR patients, we developed an HCC prediction model using a random survival forest (RSF). Model performance was assessed using Harrel's c-index and validated in an independent cohort of 737 SVR patients. Shapley additive explanation (SHAP) facilitated feature quantification, whereas optimal cutoffs were determined using maximally selected rank statistics. We used Kaplan-Meier analysis to compare cumulative HCC incidence between risk groups.

Results: We achieved c-index scores and 95% CIs of 0.90 (0.85 to 0.94) and 0.80 (0.74 to 0.85) in the derivation and validation cohorts, respectively, in a model using platelet count, gamma-glutamyl transpeptidase, sex, age, and ALT. Stratification resulted in four risk groups: low, intermediate, high, and very high. The 5-year cumulative HCC incidence rates and 95% CIs for these groups were as follows: derivation: 0% (0 to 0), 3.8% (0.6 to 6.8), 26.2% (17.2 to 34.3), and 54.2% (20.2 to 73.7), respectively, and validation: 0.7% (0 to 1.6), 7.1% (2.7 to 11.3), 5.2% (0 to 10.8), and 28.6% (0 to 55.3), respectively.

Conclusion: The integration of RSF and SHAP enabled accurate HCC risk classification after SVR, which may facilitate individualized HCC screening strategies and more cost-effective care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信