动态线粒体自噬轨迹是大脑衰老的标志。

Autophagy Pub Date : 2025-02-01 Epub Date: 2024-12-19 DOI:10.1080/15548627.2024.2426115
Anna Rappe, Thomas G McWilliams
{"title":"动态线粒体自噬轨迹是大脑衰老的标志。","authors":"Anna Rappe, Thomas G McWilliams","doi":"10.1080/15548627.2024.2426115","DOIUrl":null,"url":null,"abstract":"<p><p>Studies using mitophagy reporter mice have established steady-state landscapes of mitochondrial destruction in mammalian tissues, sparking intense interest in basal mitophagy. Yet how basal mitophagy is modified by healthy aging in diverse brain cell types has remained a mystery. We present a comprehensive spatiotemporal analysis of mitophagy and macroautophagy dynamics in the aging mammalian brain, reporting critical region- and cell-specific turnover trajectories in a longitudinal study. We demonstrate that the physiological regulation of mitophagy in the mammalian brain is cell-specific, dynamic and complex. Mitophagy increases significantly in the cerebellum and hippocampus during midlife, while remaining unchanged in the prefrontal cortex (PFC). Conversely, macroautophagy decreases in the hippocampus and PFC, but remains stable in the cerebellum. We also describe emergent lysosomal heterogeneity, with subsets of differential acidified lysosomes accumulating in the aging brain. We further establish midlife as a critical inflection point for autophagy regulation, which may be important for region-specific vulnerability and resilience to aging. By mapping <i>in</i> <i>vivo</i> autophagy dynamics at the single cell level within projection neurons, interneurons and microglia, to astrocytes and secretory cells, we provide a new framework for understanding brain aging and offer potential targets and timepoints for further study and intervention in neurodegenerative diseases.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"487-489"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759532/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamic mitophagy trajectories hallmark brain aging.\",\"authors\":\"Anna Rappe, Thomas G McWilliams\",\"doi\":\"10.1080/15548627.2024.2426115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studies using mitophagy reporter mice have established steady-state landscapes of mitochondrial destruction in mammalian tissues, sparking intense interest in basal mitophagy. Yet how basal mitophagy is modified by healthy aging in diverse brain cell types has remained a mystery. We present a comprehensive spatiotemporal analysis of mitophagy and macroautophagy dynamics in the aging mammalian brain, reporting critical region- and cell-specific turnover trajectories in a longitudinal study. We demonstrate that the physiological regulation of mitophagy in the mammalian brain is cell-specific, dynamic and complex. Mitophagy increases significantly in the cerebellum and hippocampus during midlife, while remaining unchanged in the prefrontal cortex (PFC). Conversely, macroautophagy decreases in the hippocampus and PFC, but remains stable in the cerebellum. We also describe emergent lysosomal heterogeneity, with subsets of differential acidified lysosomes accumulating in the aging brain. We further establish midlife as a critical inflection point for autophagy regulation, which may be important for region-specific vulnerability and resilience to aging. By mapping <i>in</i> <i>vivo</i> autophagy dynamics at the single cell level within projection neurons, interneurons and microglia, to astrocytes and secretory cells, we provide a new framework for understanding brain aging and offer potential targets and timepoints for further study and intervention in neurodegenerative diseases.</p>\",\"PeriodicalId\":93893,\"journal\":{\"name\":\"Autophagy\",\"volume\":\" \",\"pages\":\"487-489\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759532/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2024.2426115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2426115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用线粒体自噬报告小鼠的研究已经在哺乳动物组织中建立了线粒体破坏的稳态景观,引发了对基础线粒体自噬的强烈兴趣。然而,不同脑细胞类型的健康衰老如何改变基础有丝分裂仍然是一个谜。我们对衰老哺乳动物大脑中的线粒体自噬和巨噬动力学进行了全面的时空分析,并在一项纵向研究中报告了关键区域和细胞特异性的转换轨迹。我们证明了哺乳动物大脑中线粒体自噬的生理调节是细胞特异性的、动态的和复杂的。在中年时期,小脑和海马的线粒体自噬显著增加,而前额叶皮层(PFC)的线粒体自噬保持不变。相反,巨噬在海马和PFC中减少,但在小脑中保持稳定。我们还描述了出现的溶酶体异质性,不同酸化溶酶体亚群在衰老的大脑中积累。我们进一步确定中年是自噬调节的关键拐点,这可能对特定区域的衰老脆弱性和恢复力很重要。通过在投射神经元、中间神经元和小胶质细胞、星形胶质细胞和分泌细胞的单细胞水平上绘制体内自噬动力学,我们为理解脑衰老提供了一个新的框架,并为进一步研究和干预神经退行性疾病提供了潜在的靶点和时间点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic mitophagy trajectories hallmark brain aging.

Studies using mitophagy reporter mice have established steady-state landscapes of mitochondrial destruction in mammalian tissues, sparking intense interest in basal mitophagy. Yet how basal mitophagy is modified by healthy aging in diverse brain cell types has remained a mystery. We present a comprehensive spatiotemporal analysis of mitophagy and macroautophagy dynamics in the aging mammalian brain, reporting critical region- and cell-specific turnover trajectories in a longitudinal study. We demonstrate that the physiological regulation of mitophagy in the mammalian brain is cell-specific, dynamic and complex. Mitophagy increases significantly in the cerebellum and hippocampus during midlife, while remaining unchanged in the prefrontal cortex (PFC). Conversely, macroautophagy decreases in the hippocampus and PFC, but remains stable in the cerebellum. We also describe emergent lysosomal heterogeneity, with subsets of differential acidified lysosomes accumulating in the aging brain. We further establish midlife as a critical inflection point for autophagy regulation, which may be important for region-specific vulnerability and resilience to aging. By mapping in vivo autophagy dynamics at the single cell level within projection neurons, interneurons and microglia, to astrocytes and secretory cells, we provide a new framework for understanding brain aging and offer potential targets and timepoints for further study and intervention in neurodegenerative diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信