Mehmet Esad Güven, Mustafa Borga Donmez, Ayyüce Nur Tezcan, Hyung-In Yoon, Burak Yilmaz, Gülce Çakmak
{"title":"热机械老化后加减制造树脂基嵌体修复体的性能和耐久性。","authors":"Mehmet Esad Güven, Mustafa Borga Donmez, Ayyüce Nur Tezcan, Hyung-In Yoon, Burak Yilmaz, Gülce Çakmak","doi":"10.1111/jopr.14005","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the effect of material type on dimensional stability, occlusal surface wear, fracture resistance, and failure behavior of resin-based onlay restorations.</p><p><strong>Material and methods: </strong>A mandibular right first molar typodont was prepared and digitized using an intraoral scanner to virtually design an onlay restoration with the minimum occlusal thickness of 1.5 mm. Resin-based onlay restorations (n = 15 per group) were fabricated either additively from 2 different resins indicated either for definitive or interim use or subtractively with a composite resin. After cementing onlays to corresponding dies, each of them was digitized before and after thermomechanical aging (B-STL and A-STL), and then subjected to load-to-failure test to evaluate fracture resistance. The B-STL and A-STL of each onlay were also compared to assess the dimensional stability and occlusal surface wear. One-way analysis of variance and Tukey honestly significant difference tests were used to evaluate dimensional stability, occlusal surface wear, and fracture resistance. The chi-square test was used to evaluate the Weibull modulus and characteristic strength among the groups (α = 0.05).</p><p><strong>Results: </strong>Material type affected investigated outcomes (p < 0.001). The additively manufactured resin indicated for definitive use led to the highest external surface deviations and the additively manufactured resin indicated for interim use led to the highest mesiodistal width deviations (p ≤ 0.033). The onlays fabricated from the additively manufactured resin indicated for definitive use had the highest occlusal surface wear, while those in composite resin had the lowest (p ≤ 0.006). The composite resin onlays had the highest fracture resistance values and reliability (p ≤ 0.035).</p><p><strong>Conclusions: </strong>Tested subtractively manufactured composite resin had the lowest occlusal surface wear with the highest fracture resistance and reliability. Additively manufactured resins had lower dimensional stability, while tested resin for additively manufactured definitive restorations had the highest occlusal surface wear.</p>","PeriodicalId":49152,"journal":{"name":"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance and durability of additively and subtractively manufactured resin-based onlay restorations after thermomechanical aging.\",\"authors\":\"Mehmet Esad Güven, Mustafa Borga Donmez, Ayyüce Nur Tezcan, Hyung-In Yoon, Burak Yilmaz, Gülce Çakmak\",\"doi\":\"10.1111/jopr.14005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate the effect of material type on dimensional stability, occlusal surface wear, fracture resistance, and failure behavior of resin-based onlay restorations.</p><p><strong>Material and methods: </strong>A mandibular right first molar typodont was prepared and digitized using an intraoral scanner to virtually design an onlay restoration with the minimum occlusal thickness of 1.5 mm. Resin-based onlay restorations (n = 15 per group) were fabricated either additively from 2 different resins indicated either for definitive or interim use or subtractively with a composite resin. After cementing onlays to corresponding dies, each of them was digitized before and after thermomechanical aging (B-STL and A-STL), and then subjected to load-to-failure test to evaluate fracture resistance. The B-STL and A-STL of each onlay were also compared to assess the dimensional stability and occlusal surface wear. One-way analysis of variance and Tukey honestly significant difference tests were used to evaluate dimensional stability, occlusal surface wear, and fracture resistance. The chi-square test was used to evaluate the Weibull modulus and characteristic strength among the groups (α = 0.05).</p><p><strong>Results: </strong>Material type affected investigated outcomes (p < 0.001). The additively manufactured resin indicated for definitive use led to the highest external surface deviations and the additively manufactured resin indicated for interim use led to the highest mesiodistal width deviations (p ≤ 0.033). The onlays fabricated from the additively manufactured resin indicated for definitive use had the highest occlusal surface wear, while those in composite resin had the lowest (p ≤ 0.006). The composite resin onlays had the highest fracture resistance values and reliability (p ≤ 0.035).</p><p><strong>Conclusions: </strong>Tested subtractively manufactured composite resin had the lowest occlusal surface wear with the highest fracture resistance and reliability. Additively manufactured resins had lower dimensional stability, while tested resin for additively manufactured definitive restorations had the highest occlusal surface wear.</p>\",\"PeriodicalId\":49152,\"journal\":{\"name\":\"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jopr.14005\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jopr.14005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Performance and durability of additively and subtractively manufactured resin-based onlay restorations after thermomechanical aging.
Purpose: To evaluate the effect of material type on dimensional stability, occlusal surface wear, fracture resistance, and failure behavior of resin-based onlay restorations.
Material and methods: A mandibular right first molar typodont was prepared and digitized using an intraoral scanner to virtually design an onlay restoration with the minimum occlusal thickness of 1.5 mm. Resin-based onlay restorations (n = 15 per group) were fabricated either additively from 2 different resins indicated either for definitive or interim use or subtractively with a composite resin. After cementing onlays to corresponding dies, each of them was digitized before and after thermomechanical aging (B-STL and A-STL), and then subjected to load-to-failure test to evaluate fracture resistance. The B-STL and A-STL of each onlay were also compared to assess the dimensional stability and occlusal surface wear. One-way analysis of variance and Tukey honestly significant difference tests were used to evaluate dimensional stability, occlusal surface wear, and fracture resistance. The chi-square test was used to evaluate the Weibull modulus and characteristic strength among the groups (α = 0.05).
Results: Material type affected investigated outcomes (p < 0.001). The additively manufactured resin indicated for definitive use led to the highest external surface deviations and the additively manufactured resin indicated for interim use led to the highest mesiodistal width deviations (p ≤ 0.033). The onlays fabricated from the additively manufactured resin indicated for definitive use had the highest occlusal surface wear, while those in composite resin had the lowest (p ≤ 0.006). The composite resin onlays had the highest fracture resistance values and reliability (p ≤ 0.035).
Conclusions: Tested subtractively manufactured composite resin had the lowest occlusal surface wear with the highest fracture resistance and reliability. Additively manufactured resins had lower dimensional stability, while tested resin for additively manufactured definitive restorations had the highest occlusal surface wear.
期刊介绍:
The Journal of Prosthodontics promotes the advanced study and practice of prosthodontics, implant, esthetic, and reconstructive dentistry. It is the official journal of the American College of Prosthodontists, the American Dental Association-recognized voice of the Specialty of Prosthodontics. The journal publishes evidence-based original scientific articles presenting information that is relevant and useful to prosthodontists. Additionally, it publishes reports of innovative techniques, new instructional methodologies, and instructive clinical reports with an interdisciplinary flair. The journal is particularly focused on promoting the study and use of cutting-edge technology and positioning prosthodontists as the early-adopters of new technology in the dental community.