João Agostinho Machado-Neto, Hugo Passos Vicari, Jean Carlos Lipreri da Silva, Maria Fernanda Lopes Carvalho, Keli Lima
{"title":"FMNL1在髓系肿瘤中的新功能:从生物信息学到生物学和药理学的见解。","authors":"João Agostinho Machado-Neto, Hugo Passos Vicari, Jean Carlos Lipreri da Silva, Maria Fernanda Lopes Carvalho, Keli Lima","doi":"10.21037/tcr-24-1091","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myeloid neoplasms encompass disorders characterized by abnormal myeloid cell proliferation and differentiation, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms, acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). Formin-like protein 1 (FMNL1) is involved in the regulation of the actin cytoskeleton and is predominantly expressed in hematopoietic cells. Given its role in leukemia cell proliferation, survival, migration, and invasion, this study investigates FMNL1 expression in normal hematopoiesis and myeloid neoplasms and explores associations with clinical-laboratory characteristics, mutational status, and survival outcomes in AML.</p><p><strong>Methods: </strong>Transcript levels of <i>FMNL1</i> from several blood-forming cell populations and myeloid neoplasms were extracted from publicly available databases. Myeloid neoplasm cell lines were used for gene/protein expression and cell differentiation studies. Functional genomics analysis was performed using RNA-seq data from The Cancer Genome Atlas (TCGA) AML study, and drug sensitivity predictions were investigated using Beat AML and Genomics of Drug Sensitivity in Cancer (GDSC) datasets. Statistical analyses assessed the impact of <i>FMNL1</i> expression on clinical outcomes.</p><p><strong>Results: </strong>FMNL1 was highly expressed in metamyelocytes, neutrophils, and monocytes compared to hematopoietic stem cells, and its expression increased with granulocytic differentiation. FMNL1 expression was elevated in AML and CML patients compared to healthy donors. <i>FMNL1</i> expression was not significantly associated with clinical-laboratory characteristics or survival outcomes but showed a higher frequency of WT1 transcription factor (WT1) mutations with low <i>FMNL1</i> expression in AML patients. High FMNL1 expression in AML correlated with immune response and inflammatory activity pathways. <i>FMNL1</i> mRNA levels influenced drug sensitivity in AML models, with correlations observed for specific antineoplastic agents.</p><p><strong>Conclusions: </strong>FMNL1 plays a potential role in granulocyte differentiation and function, and its differential expression is linked to critical signaling pathways in leukemogenesis and inflammation. These findings highlight FMNL1's potential therapeutic implications in myeloid neoplasia, warranting further investigation.</p>","PeriodicalId":23216,"journal":{"name":"Translational cancer research","volume":"13 11","pages":"6105-6116"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651780/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emerging functions of FMNL1 in myeloid neoplasms: insights from bioinformatics to biological and pharmacological landscapes.\",\"authors\":\"João Agostinho Machado-Neto, Hugo Passos Vicari, Jean Carlos Lipreri da Silva, Maria Fernanda Lopes Carvalho, Keli Lima\",\"doi\":\"10.21037/tcr-24-1091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Myeloid neoplasms encompass disorders characterized by abnormal myeloid cell proliferation and differentiation, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms, acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). Formin-like protein 1 (FMNL1) is involved in the regulation of the actin cytoskeleton and is predominantly expressed in hematopoietic cells. Given its role in leukemia cell proliferation, survival, migration, and invasion, this study investigates FMNL1 expression in normal hematopoiesis and myeloid neoplasms and explores associations with clinical-laboratory characteristics, mutational status, and survival outcomes in AML.</p><p><strong>Methods: </strong>Transcript levels of <i>FMNL1</i> from several blood-forming cell populations and myeloid neoplasms were extracted from publicly available databases. Myeloid neoplasm cell lines were used for gene/protein expression and cell differentiation studies. Functional genomics analysis was performed using RNA-seq data from The Cancer Genome Atlas (TCGA) AML study, and drug sensitivity predictions were investigated using Beat AML and Genomics of Drug Sensitivity in Cancer (GDSC) datasets. Statistical analyses assessed the impact of <i>FMNL1</i> expression on clinical outcomes.</p><p><strong>Results: </strong>FMNL1 was highly expressed in metamyelocytes, neutrophils, and monocytes compared to hematopoietic stem cells, and its expression increased with granulocytic differentiation. FMNL1 expression was elevated in AML and CML patients compared to healthy donors. <i>FMNL1</i> expression was not significantly associated with clinical-laboratory characteristics or survival outcomes but showed a higher frequency of WT1 transcription factor (WT1) mutations with low <i>FMNL1</i> expression in AML patients. High FMNL1 expression in AML correlated with immune response and inflammatory activity pathways. <i>FMNL1</i> mRNA levels influenced drug sensitivity in AML models, with correlations observed for specific antineoplastic agents.</p><p><strong>Conclusions: </strong>FMNL1 plays a potential role in granulocyte differentiation and function, and its differential expression is linked to critical signaling pathways in leukemogenesis and inflammation. These findings highlight FMNL1's potential therapeutic implications in myeloid neoplasia, warranting further investigation.</p>\",\"PeriodicalId\":23216,\"journal\":{\"name\":\"Translational cancer research\",\"volume\":\"13 11\",\"pages\":\"6105-6116\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651780/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/tcr-24-1091\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tcr-24-1091","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
Emerging functions of FMNL1 in myeloid neoplasms: insights from bioinformatics to biological and pharmacological landscapes.
Background: Myeloid neoplasms encompass disorders characterized by abnormal myeloid cell proliferation and differentiation, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms, acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). Formin-like protein 1 (FMNL1) is involved in the regulation of the actin cytoskeleton and is predominantly expressed in hematopoietic cells. Given its role in leukemia cell proliferation, survival, migration, and invasion, this study investigates FMNL1 expression in normal hematopoiesis and myeloid neoplasms and explores associations with clinical-laboratory characteristics, mutational status, and survival outcomes in AML.
Methods: Transcript levels of FMNL1 from several blood-forming cell populations and myeloid neoplasms were extracted from publicly available databases. Myeloid neoplasm cell lines were used for gene/protein expression and cell differentiation studies. Functional genomics analysis was performed using RNA-seq data from The Cancer Genome Atlas (TCGA) AML study, and drug sensitivity predictions were investigated using Beat AML and Genomics of Drug Sensitivity in Cancer (GDSC) datasets. Statistical analyses assessed the impact of FMNL1 expression on clinical outcomes.
Results: FMNL1 was highly expressed in metamyelocytes, neutrophils, and monocytes compared to hematopoietic stem cells, and its expression increased with granulocytic differentiation. FMNL1 expression was elevated in AML and CML patients compared to healthy donors. FMNL1 expression was not significantly associated with clinical-laboratory characteristics or survival outcomes but showed a higher frequency of WT1 transcription factor (WT1) mutations with low FMNL1 expression in AML patients. High FMNL1 expression in AML correlated with immune response and inflammatory activity pathways. FMNL1 mRNA levels influenced drug sensitivity in AML models, with correlations observed for specific antineoplastic agents.
Conclusions: FMNL1 plays a potential role in granulocyte differentiation and function, and its differential expression is linked to critical signaling pathways in leukemogenesis and inflammation. These findings highlight FMNL1's potential therapeutic implications in myeloid neoplasia, warranting further investigation.
期刊介绍:
Translational Cancer Research (Transl Cancer Res TCR; Print ISSN: 2218-676X; Online ISSN 2219-6803; http://tcr.amegroups.com/) is an Open Access, peer-reviewed journal, indexed in Science Citation Index Expanded (SCIE). TCR publishes laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer; results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of cancer patients. The focus of TCR is original, peer-reviewed, science-based research that successfully advances clinical medicine toward the goal of improving patients'' quality of life. The editors and an international advisory group of scientists and clinician-scientists as well as other experts will hold TCR articles to the high-quality standards. We accept Original Articles as well as Review Articles, Editorials and Brief Articles.