{"title":"大肠杆菌内(胞质)膜溶血磷脂转运的先进体内测定方法","authors":"Yibin Lin, Lei Zheng, Mikhail Bogdanov","doi":"10.1007/978-1-0716-4318-1_11","DOIUrl":null,"url":null,"abstract":"<p><p>Phospholipid translocation occurs ubiquitously in biological membranes and primarily is protein catalyzed. Lipid flippases mediate the net translocation of specific phospholipids from one leaflet of a membrane to the other. In the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria, lysophospholipid translocase (LplT) and cytosolic bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase (Aas) form a glycerophospholipid regeneration system, which is capable of facilitating rapid retrograde translocation of lyso forms of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) but not exogenous (host-derived) phosphatidylcholine (PC) across the IM of Gram-negative diderm (two-membraned) bacteria in consequential order lyso-PE = lyso-PG > > lysophosphatidic acid (lyso-PA) >> lyso-PC. Although several flippases that bind and move non-glycerophosphatidyl lipids across the IM are characterized in Gram-negative bacteria, LplT appears to be the first example of a bacterial protein capable of facilitating the rapid translocation of monoacylated glycerophospholipids. On the cytoplasmic surface, Aas restores the lysophospholipids to their diacyl forms with comparable efficiency but excludes any exogenous monoacylated lipid species. This coupled remodeling enzyme tandem provides an effective means to examine substrate specificity of lipid regeneration and lysophospholipid transport per se across the membrane. The current chapter describes two distinct but complementary methods for the measurement of lysophospholipid transport across membranes using Escherichia coli spheroplasts.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2888 ","pages":"147-165"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728742/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advanced Method for the In Vivo Measurements of Lysophospholipid Translocation Across the Inner (Cytoplasmic) Membrane of Escherichia coli.\",\"authors\":\"Yibin Lin, Lei Zheng, Mikhail Bogdanov\",\"doi\":\"10.1007/978-1-0716-4318-1_11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phospholipid translocation occurs ubiquitously in biological membranes and primarily is protein catalyzed. Lipid flippases mediate the net translocation of specific phospholipids from one leaflet of a membrane to the other. In the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria, lysophospholipid translocase (LplT) and cytosolic bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase (Aas) form a glycerophospholipid regeneration system, which is capable of facilitating rapid retrograde translocation of lyso forms of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) but not exogenous (host-derived) phosphatidylcholine (PC) across the IM of Gram-negative diderm (two-membraned) bacteria in consequential order lyso-PE = lyso-PG > > lysophosphatidic acid (lyso-PA) >> lyso-PC. Although several flippases that bind and move non-glycerophosphatidyl lipids across the IM are characterized in Gram-negative bacteria, LplT appears to be the first example of a bacterial protein capable of facilitating the rapid translocation of monoacylated glycerophospholipids. On the cytoplasmic surface, Aas restores the lysophospholipids to their diacyl forms with comparable efficiency but excludes any exogenous monoacylated lipid species. This coupled remodeling enzyme tandem provides an effective means to examine substrate specificity of lipid regeneration and lysophospholipid transport per se across the membrane. The current chapter describes two distinct but complementary methods for the measurement of lysophospholipid transport across membranes using Escherichia coli spheroplasts.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\"2888 \",\"pages\":\"147-165\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728742/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-0716-4318-1_11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4318-1_11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Advanced Method for the In Vivo Measurements of Lysophospholipid Translocation Across the Inner (Cytoplasmic) Membrane of Escherichia coli.
Phospholipid translocation occurs ubiquitously in biological membranes and primarily is protein catalyzed. Lipid flippases mediate the net translocation of specific phospholipids from one leaflet of a membrane to the other. In the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria, lysophospholipid translocase (LplT) and cytosolic bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase (Aas) form a glycerophospholipid regeneration system, which is capable of facilitating rapid retrograde translocation of lyso forms of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) but not exogenous (host-derived) phosphatidylcholine (PC) across the IM of Gram-negative diderm (two-membraned) bacteria in consequential order lyso-PE = lyso-PG > > lysophosphatidic acid (lyso-PA) >> lyso-PC. Although several flippases that bind and move non-glycerophosphatidyl lipids across the IM are characterized in Gram-negative bacteria, LplT appears to be the first example of a bacterial protein capable of facilitating the rapid translocation of monoacylated glycerophospholipids. On the cytoplasmic surface, Aas restores the lysophospholipids to their diacyl forms with comparable efficiency but excludes any exogenous monoacylated lipid species. This coupled remodeling enzyme tandem provides an effective means to examine substrate specificity of lipid regeneration and lysophospholipid transport per se across the membrane. The current chapter describes two distinct but complementary methods for the measurement of lysophospholipid transport across membranes using Escherichia coli spheroplasts.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.