{"title":"利用DigNet从scRNA-seq数据中扩散生成基因调控网络。","authors":"Chuanyuan Wang, Zhi-Ping Liu","doi":"10.1101/gr.279551.124","DOIUrl":null,"url":null,"abstract":"<p><p>A gene regulatory network (GRN) intricately encodes the interconnectedness of identities and functionalities of genes within cells, ultimately shaping cellular specificity. Despite decades of endeavors, reverse engineering of GRNs from gene expression profiling data remains a profound challenge, particularly when it comes to reconstructing cell-specific GRNs that are tailored to precise cellular and genetic contexts. Here, we propose a discrete diffusion generation model, called DigNet, capable of generating corresponding GRNs from high-throughput single-cell RNA sequencing (scRNA-seq) data. DigNet embeds the network generation process into a multistep recovery procedure with Markov properties. Each intermediate step has a specific model to recover a portion of the gene regulatory architectures. It thus can ensure compatibility between global network structures and regulatory modules through the unique multistep diffusion procedure. Furthermore, through iMetacell integration and non-Euclidean discrete space modeling, DigNet is robust to the presence of noise in scRNA-seq data and the sparsity of GRNs. Benchmark evaluation results against more than a dozen state-of-the-art network inference methods demonstrate that DigNet achieves superior performance across various single-cell GRN reconstruction experiments. Furthermore, DigNet provides unique insights into the immune response in breast cancer, derived from differential gene regulation identified in T cells. As an open-source software, DigNet offers a powerful and effective tool for generating cell-specific GRNs from scRNA-seq data.</p>","PeriodicalId":12678,"journal":{"name":"Genome research","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion-based generation of gene regulatory networks from scRNA-seq data with DigNet.\",\"authors\":\"Chuanyuan Wang, Zhi-Ping Liu\",\"doi\":\"10.1101/gr.279551.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A gene regulatory network (GRN) intricately encodes the interconnectedness of identities and functionalities of genes within cells, ultimately shaping cellular specificity. Despite decades of endeavors, reverse engineering of GRNs from gene expression profiling data remains a profound challenge, particularly when it comes to reconstructing cell-specific GRNs that are tailored to precise cellular and genetic contexts. Here, we propose a discrete diffusion generation model, called DigNet, capable of generating corresponding GRNs from high-throughput single-cell RNA sequencing (scRNA-seq) data. DigNet embeds the network generation process into a multistep recovery procedure with Markov properties. Each intermediate step has a specific model to recover a portion of the gene regulatory architectures. It thus can ensure compatibility between global network structures and regulatory modules through the unique multistep diffusion procedure. Furthermore, through iMetacell integration and non-Euclidean discrete space modeling, DigNet is robust to the presence of noise in scRNA-seq data and the sparsity of GRNs. Benchmark evaluation results against more than a dozen state-of-the-art network inference methods demonstrate that DigNet achieves superior performance across various single-cell GRN reconstruction experiments. Furthermore, DigNet provides unique insights into the immune response in breast cancer, derived from differential gene regulation identified in T cells. As an open-source software, DigNet offers a powerful and effective tool for generating cell-specific GRNs from scRNA-seq data.</p>\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.279551.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279551.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Diffusion-based generation of gene regulatory networks from scRNA-seq data with DigNet.
A gene regulatory network (GRN) intricately encodes the interconnectedness of identities and functionalities of genes within cells, ultimately shaping cellular specificity. Despite decades of endeavors, reverse engineering of GRNs from gene expression profiling data remains a profound challenge, particularly when it comes to reconstructing cell-specific GRNs that are tailored to precise cellular and genetic contexts. Here, we propose a discrete diffusion generation model, called DigNet, capable of generating corresponding GRNs from high-throughput single-cell RNA sequencing (scRNA-seq) data. DigNet embeds the network generation process into a multistep recovery procedure with Markov properties. Each intermediate step has a specific model to recover a portion of the gene regulatory architectures. It thus can ensure compatibility between global network structures and regulatory modules through the unique multistep diffusion procedure. Furthermore, through iMetacell integration and non-Euclidean discrete space modeling, DigNet is robust to the presence of noise in scRNA-seq data and the sparsity of GRNs. Benchmark evaluation results against more than a dozen state-of-the-art network inference methods demonstrate that DigNet achieves superior performance across various single-cell GRN reconstruction experiments. Furthermore, DigNet provides unique insights into the immune response in breast cancer, derived from differential gene regulation identified in T cells. As an open-source software, DigNet offers a powerful and effective tool for generating cell-specific GRNs from scRNA-seq data.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.