informmeasure:一个R/bioconductor包,从信息论的角度量化生物网络中变量之间的非线性依赖。

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Chu Pan, Yanlin Chen
{"title":"informmeasure:一个R/bioconductor包,从信息论的角度量化生物网络中变量之间的非线性依赖。","authors":"Chu Pan, Yanlin Chen","doi":"10.1186/s12859-024-05996-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Using information measures to infer biological regulatory networks can capture nonlinear relationships between variables. However, it is computationally challenging, and there is a lack of convenient tools.</p><p><strong>Results: </strong>We introduce Informeasure, an R package designed to quantify nonlinear dependencies in biological regulatory networks from an information theory perspective. This package compiles a comprehensive set of information measurements, including mutual information, conditional mutual information, interaction information, partial information decomposition, and part mutual information. Mutual information is used for bivariate network inference, while the other four estimators are dedicated to trivariate network analysis.</p><p><strong>Conclusions: </strong>Informeasure is a turnkey solution, allowing users to utilize these information measures immediately upon installation. Informeasure is available as an R/Bioconductor package at https://bioconductor.org/packages/Informeasure .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"382"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658358/pdf/","citationCount":"0","resultStr":"{\"title\":\"Informeasure: an R/bioconductor package for quantifying nonlinear dependence between variables in biological networks from an information theory perspective.\",\"authors\":\"Chu Pan, Yanlin Chen\",\"doi\":\"10.1186/s12859-024-05996-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Using information measures to infer biological regulatory networks can capture nonlinear relationships between variables. However, it is computationally challenging, and there is a lack of convenient tools.</p><p><strong>Results: </strong>We introduce Informeasure, an R package designed to quantify nonlinear dependencies in biological regulatory networks from an information theory perspective. This package compiles a comprehensive set of information measurements, including mutual information, conditional mutual information, interaction information, partial information decomposition, and part mutual information. Mutual information is used for bivariate network inference, while the other four estimators are dedicated to trivariate network analysis.</p><p><strong>Conclusions: </strong>Informeasure is a turnkey solution, allowing users to utilize these information measures immediately upon installation. Informeasure is available as an R/Bioconductor package at https://bioconductor.org/packages/Informeasure .</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"25 1\",\"pages\":\"382\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658358/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05996-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05996-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:利用信息测度来推断生物调控网络可以捕捉变量之间的非线性关系。然而,它在计算上具有挑战性,并且缺乏方便的工具。结果:我们引入了一个R软件包informmeasure,旨在从信息论的角度量化生物调控网络中的非线性依赖关系。该包编译了一套全面的信息度量,包括互信息、条件互信息、交互信息、部分信息分解和部分互信息。互信息用于二元网络推断,而其他四个估计量用于三元网络分析。结论:Informeasure是一个交钥匙解决方案,允许用户在安装后立即使用这些信息措施。informmeasure作为R/Bioconductor软件包可在https://bioconductor.org/packages/Informeasure获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Informeasure: an R/bioconductor package for quantifying nonlinear dependence between variables in biological networks from an information theory perspective.

Background: Using information measures to infer biological regulatory networks can capture nonlinear relationships between variables. However, it is computationally challenging, and there is a lack of convenient tools.

Results: We introduce Informeasure, an R package designed to quantify nonlinear dependencies in biological regulatory networks from an information theory perspective. This package compiles a comprehensive set of information measurements, including mutual information, conditional mutual information, interaction information, partial information decomposition, and part mutual information. Mutual information is used for bivariate network inference, while the other four estimators are dedicated to trivariate network analysis.

Conclusions: Informeasure is a turnkey solution, allowing users to utilize these information measures immediately upon installation. Informeasure is available as an R/Bioconductor package at https://bioconductor.org/packages/Informeasure .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信