利用GenePlexus通过蛋白-蛋白相互作用网络预测肺腺癌驱动基因。

IF 3.4 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Proteomics Pub Date : 2024-12-18 DOI:10.1002/pmic.202400296
Fei Yuan, Yu-Hang Zhang, FeiMing Huang, Xiaoyu Cao, Lei Chen, JiaBo Li, WenFeng Shen, KaiYan Feng, YuSheng Bao, Tao Huang, Yu-Dong Cai
{"title":"利用GenePlexus通过蛋白-蛋白相互作用网络预测肺腺癌驱动基因。","authors":"Fei Yuan, Yu-Hang Zhang, FeiMing Huang, Xiaoyu Cao, Lei Chen, JiaBo Li, WenFeng Shen, KaiYan Feng, YuSheng Bao, Tao Huang, Yu-Dong Cai","doi":"10.1002/pmic.202400296","DOIUrl":null,"url":null,"abstract":"<p><p>Lung adenocarcinoma, a subtype of lung cancer, is produced by uncontrolled proliferation of somatic cells affected by some tumorigenic factors. The origin of this disease can be attributed to the concept of \"cancer driver,\" which links the occurrence of tumor with specific changes in some key genes. These key genes can be identified at various molecular levels. Our innovative method uses a groundbreaking computing technology called GenePlexus to mine new genes related to lung adenocarcinoma. Initially, a vast network was synthesized from protein-protein interactions. Utilizing GenePlexus, we traversed paths interlinking aberrant genes across different layers and pinpointed emerging candidate genes situated on these trajectories. Finally, the candidate genes that were obtained underwent a series of filtering processes, including a permutation test, interaction test, and enrichment test. Compared with the shortest path method, GenePlexus has identified previously neglected genes involved in lung adenocarcinoma. For example, genes such as EGR2, EPHA3, FGFR4, HOXB1, and HEY1 play key roles at multiple molecular levels, including methylation, microRNA, mRNA and mutation, which affect tumorigenesis and lung cancer progression. These genes regulate various processes, from gene expression and cell proliferation to drug resistance to therapeutic drugs and the progress of lung adenocarcinoma.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e202400296"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Lung Adenocarcinoma Driver Genes Through Protein-Protein Interaction Networks Utilizing GenePlexus.\",\"authors\":\"Fei Yuan, Yu-Hang Zhang, FeiMing Huang, Xiaoyu Cao, Lei Chen, JiaBo Li, WenFeng Shen, KaiYan Feng, YuSheng Bao, Tao Huang, Yu-Dong Cai\",\"doi\":\"10.1002/pmic.202400296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung adenocarcinoma, a subtype of lung cancer, is produced by uncontrolled proliferation of somatic cells affected by some tumorigenic factors. The origin of this disease can be attributed to the concept of \\\"cancer driver,\\\" which links the occurrence of tumor with specific changes in some key genes. These key genes can be identified at various molecular levels. Our innovative method uses a groundbreaking computing technology called GenePlexus to mine new genes related to lung adenocarcinoma. Initially, a vast network was synthesized from protein-protein interactions. Utilizing GenePlexus, we traversed paths interlinking aberrant genes across different layers and pinpointed emerging candidate genes situated on these trajectories. Finally, the candidate genes that were obtained underwent a series of filtering processes, including a permutation test, interaction test, and enrichment test. Compared with the shortest path method, GenePlexus has identified previously neglected genes involved in lung adenocarcinoma. For example, genes such as EGR2, EPHA3, FGFR4, HOXB1, and HEY1 play key roles at multiple molecular levels, including methylation, microRNA, mRNA and mutation, which affect tumorigenesis and lung cancer progression. These genes regulate various processes, from gene expression and cell proliferation to drug resistance to therapeutic drugs and the progress of lung adenocarcinoma.</p>\",\"PeriodicalId\":224,\"journal\":{\"name\":\"Proteomics\",\"volume\":\" \",\"pages\":\"e202400296\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pmic.202400296\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400296","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

肺腺癌是肺癌的一种亚型,是由一些致瘤因素影响的体细胞不受控制的增殖而产生的。这种疾病的起源可以归因于“癌症驱动者”的概念,它将肿瘤的发生与一些关键基因的特定变化联系起来。这些关键基因可以在不同的分子水平上进行鉴定。我们的创新方法使用了一种名为GenePlexus的突破性计算技术来挖掘与肺腺癌相关的新基因。最初,一个巨大的网络是由蛋白质之间的相互作用合成的。利用GenePlexus,我们遍历了不同层次的异常基因相互连接的路径,并确定了位于这些轨迹上的新兴候选基因。最后,对获得的候选基因进行一系列筛选,包括置换测试、相互作用测试和富集测试。与最短路径方法相比,GenePlexus已经确定了以前被忽视的与肺腺癌相关的基因。例如,EGR2、EPHA3、FGFR4、HOXB1和HEY1等基因在多个分子水平上发挥关键作用,包括甲基化、microRNA、mRNA和突变,影响肿瘤的发生和肺癌的进展。这些基因调节各种过程,从基因表达和细胞增殖到对治疗药物的耐药性和肺腺癌的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Lung Adenocarcinoma Driver Genes Through Protein-Protein Interaction Networks Utilizing GenePlexus.

Lung adenocarcinoma, a subtype of lung cancer, is produced by uncontrolled proliferation of somatic cells affected by some tumorigenic factors. The origin of this disease can be attributed to the concept of "cancer driver," which links the occurrence of tumor with specific changes in some key genes. These key genes can be identified at various molecular levels. Our innovative method uses a groundbreaking computing technology called GenePlexus to mine new genes related to lung adenocarcinoma. Initially, a vast network was synthesized from protein-protein interactions. Utilizing GenePlexus, we traversed paths interlinking aberrant genes across different layers and pinpointed emerging candidate genes situated on these trajectories. Finally, the candidate genes that were obtained underwent a series of filtering processes, including a permutation test, interaction test, and enrichment test. Compared with the shortest path method, GenePlexus has identified previously neglected genes involved in lung adenocarcinoma. For example, genes such as EGR2, EPHA3, FGFR4, HOXB1, and HEY1 play key roles at multiple molecular levels, including methylation, microRNA, mRNA and mutation, which affect tumorigenesis and lung cancer progression. These genes regulate various processes, from gene expression and cell proliferation to drug resistance to therapeutic drugs and the progress of lung adenocarcinoma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信