基于因果关系的图机器学习分布外泛化研究

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ai Magazine Pub Date : 2024-10-18 DOI:10.1002/aaai.12202
Jing Ma
{"title":"基于因果关系的图机器学习分布外泛化研究","authors":"Jing Ma","doi":"10.1002/aaai.12202","DOIUrl":null,"url":null,"abstract":"<p>Graph machine learning (GML) has been successfully applied across a wide range of tasks. Nonetheless, GML faces significant challenges in generalizing over out-of-distribution (OOD) data, which raises concerns about its wider applicability. Recent advancements have underscored the crucial role of causality-driven approaches in overcoming these generalization challenges. Distinct from traditional GML methods that primarily rely on statistical dependencies, causality-focused strategies delve into the underlying causal mechanisms of data generation and model prediction, thus significantly improving the generalization of GML across different environments. This paper offers a thorough review of recent progress in causality-involved GML generalization. We elucidate the fundamental concepts of employing causality to enhance graph model generalization and categorize the various approaches, providing detailed descriptions of their methodologies and the connections among them. Furthermore, we explore the incorporation of causality in other related important areas of trustworthy GML, such as explanation, fairness, and robustness. Concluding with a discussion on potential future research directions, this review seeks to articulate the continuing development and future potential of causality in enhancing the trustworthiness of GML.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"537-548"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12202","citationCount":"0","resultStr":"{\"title\":\"A survey of out-of-distribution generalization for graph machine learning from a causal view\",\"authors\":\"Jing Ma\",\"doi\":\"10.1002/aaai.12202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Graph machine learning (GML) has been successfully applied across a wide range of tasks. Nonetheless, GML faces significant challenges in generalizing over out-of-distribution (OOD) data, which raises concerns about its wider applicability. Recent advancements have underscored the crucial role of causality-driven approaches in overcoming these generalization challenges. Distinct from traditional GML methods that primarily rely on statistical dependencies, causality-focused strategies delve into the underlying causal mechanisms of data generation and model prediction, thus significantly improving the generalization of GML across different environments. This paper offers a thorough review of recent progress in causality-involved GML generalization. We elucidate the fundamental concepts of employing causality to enhance graph model generalization and categorize the various approaches, providing detailed descriptions of their methodologies and the connections among them. Furthermore, we explore the incorporation of causality in other related important areas of trustworthy GML, such as explanation, fairness, and robustness. Concluding with a discussion on potential future research directions, this review seeks to articulate the continuing development and future potential of causality in enhancing the trustworthiness of GML.</p>\",\"PeriodicalId\":7854,\"journal\":{\"name\":\"Ai Magazine\",\"volume\":\"45 4\",\"pages\":\"537-548\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12202\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Magazine\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12202\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12202","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

图机器学习(GML)已经成功地应用于广泛的任务中。尽管如此,GML在泛化分布外(out- distribution, OOD)数据方面面临着重大挑战,这引发了对其更广泛适用性的担忧。最近的进展强调了因果关系驱动的方法在克服这些泛化挑战中的关键作用。与主要依赖统计依赖的传统GML方法不同,以因果关系为中心的策略深入研究了数据生成和模型预测的潜在因果机制,从而显著提高了GML在不同环境中的泛化能力。本文提供了一个全面的综述最近进展的因果关系涉及GML泛化。我们阐明了利用因果关系来增强图模型泛化的基本概念,并对各种方法进行了分类,详细描述了它们的方法和它们之间的联系。此外,我们探讨了可信赖GML的其他相关重要领域中因果关系的结合,如解释、公平性和鲁棒性。最后讨论了未来潜在的研究方向,本文旨在阐明因果关系在提高GML可信度方面的持续发展和未来潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A survey of out-of-distribution generalization for graph machine learning from a causal view

A survey of out-of-distribution generalization for graph machine learning from a causal view

Graph machine learning (GML) has been successfully applied across a wide range of tasks. Nonetheless, GML faces significant challenges in generalizing over out-of-distribution (OOD) data, which raises concerns about its wider applicability. Recent advancements have underscored the crucial role of causality-driven approaches in overcoming these generalization challenges. Distinct from traditional GML methods that primarily rely on statistical dependencies, causality-focused strategies delve into the underlying causal mechanisms of data generation and model prediction, thus significantly improving the generalization of GML across different environments. This paper offers a thorough review of recent progress in causality-involved GML generalization. We elucidate the fundamental concepts of employing causality to enhance graph model generalization and categorize the various approaches, providing detailed descriptions of their methodologies and the connections among them. Furthermore, we explore the incorporation of causality in other related important areas of trustworthy GML, such as explanation, fairness, and robustness. Concluding with a discussion on potential future research directions, this review seeks to articulate the continuing development and future potential of causality in enhancing the trustworthiness of GML.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信