{"title":"框架来启用和测试api和rpa的会话助手","authors":"Jayachandu Bandlamudi, Kushal Mukherjee, Prerna Agarwal, Ritwik Chaudhuri, Rakesh Pimplikar, Sampath Dechu, Alex Straley, Anbumunee Ponniah, Renuka Sindhgatta","doi":"10.1002/aaai.12198","DOIUrl":null,"url":null,"abstract":"<p>In the realm of business automation, conversational assistants are emerging as the primary method for making automation software accessible to users in various business sectors. Access to automation primarily occurs through application programming interface (APIs) and robotic process automation (RPAs). To effectively convert APIs and RPAs into chatbots on a larger scale, it is crucial to establish an automated process for generating data and training models that can recognize user intentions, identify questions for conversational slot filling, and provide recommendations for subsequent actions. In this paper, we present a technique for enhancing and generating natural language conversational artifacts from API specifications using large language models (LLMs). The goal is to utilize LLMs in the “build” phase to assist humans in creating skills for digital assistants. As a result, the system does not need to rely on LLMs during conversations with business users, leading to efficient deployment. Along with enabling digital assistants, our system employs LLMs as proxies to simulate human interaction and automatically evaluate the digital assistant's performance. Experimental results highlight the effectiveness of our proposed approach. Our system is deployed in the IBM Watson Orchestrate product for general availability.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"443-456"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12198","citationCount":"0","resultStr":"{\"title\":\"Framework to enable and test conversational assistant for APIs and RPAs\",\"authors\":\"Jayachandu Bandlamudi, Kushal Mukherjee, Prerna Agarwal, Ritwik Chaudhuri, Rakesh Pimplikar, Sampath Dechu, Alex Straley, Anbumunee Ponniah, Renuka Sindhgatta\",\"doi\":\"10.1002/aaai.12198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the realm of business automation, conversational assistants are emerging as the primary method for making automation software accessible to users in various business sectors. Access to automation primarily occurs through application programming interface (APIs) and robotic process automation (RPAs). To effectively convert APIs and RPAs into chatbots on a larger scale, it is crucial to establish an automated process for generating data and training models that can recognize user intentions, identify questions for conversational slot filling, and provide recommendations for subsequent actions. In this paper, we present a technique for enhancing and generating natural language conversational artifacts from API specifications using large language models (LLMs). The goal is to utilize LLMs in the “build” phase to assist humans in creating skills for digital assistants. As a result, the system does not need to rely on LLMs during conversations with business users, leading to efficient deployment. Along with enabling digital assistants, our system employs LLMs as proxies to simulate human interaction and automatically evaluate the digital assistant's performance. Experimental results highlight the effectiveness of our proposed approach. Our system is deployed in the IBM Watson Orchestrate product for general availability.</p>\",\"PeriodicalId\":7854,\"journal\":{\"name\":\"Ai Magazine\",\"volume\":\"45 4\",\"pages\":\"443-456\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12198\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Magazine\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12198\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12198","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Framework to enable and test conversational assistant for APIs and RPAs
In the realm of business automation, conversational assistants are emerging as the primary method for making automation software accessible to users in various business sectors. Access to automation primarily occurs through application programming interface (APIs) and robotic process automation (RPAs). To effectively convert APIs and RPAs into chatbots on a larger scale, it is crucial to establish an automated process for generating data and training models that can recognize user intentions, identify questions for conversational slot filling, and provide recommendations for subsequent actions. In this paper, we present a technique for enhancing and generating natural language conversational artifacts from API specifications using large language models (LLMs). The goal is to utilize LLMs in the “build” phase to assist humans in creating skills for digital assistants. As a result, the system does not need to rely on LLMs during conversations with business users, leading to efficient deployment. Along with enabling digital assistants, our system employs LLMs as proxies to simulate human interaction and automatically evaluate the digital assistant's performance. Experimental results highlight the effectiveness of our proposed approach. Our system is deployed in the IBM Watson Orchestrate product for general availability.
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.