{"title":"西北太平洋不同回归期的极端风速估算","authors":"Lisha Kong, Xiuzhi Zhang, Huanping Wu, Yu Li","doi":"10.1002/met.70012","DOIUrl":null,"url":null,"abstract":"<p>It is vital to analyze extreme wind speed in marine engineering designs. However, due to the lack of observational data, it is impossible to establish the measured long-term wind speed series. This study simulates the annual hourly wind field of every tropical cyclone (TC) with a resolution of 5 km in the Northwest Pacific (NWP) from 1981 to 2020. On this basis, combined with the sea surface wind speed data observed by the satellites and the ships, the 40-year annual maximum wind speed series of NWP are established. The Gumbel, three-parameter Weibull (Weibull-3par), two-parameter Weibull (Weibull-2par), generalized extreme-value (GEV) distribution, and the two parameter estimation methods are used to estimate the extreme wind speeds with different return periods (RPs) at four typical locations in the NWP. Meanwhile, the effects of different extreme-value distributions and different parameter estimation methods on the estimation results are discussed. Subsequently, the best distribution and parameter estimation method for each grid in the NWP are determined by the goodness-of-fit test, and then the spatial distributions of extreme wind speeds with different RPs along with uncertainty estimates in the entire NWP are obtained. The results show that extreme wind speeds with RPs of 5, 25, 50, and 100 years in the east of Taiwan and Philippines can reach a maximum of 43.8, 60.8, 70.4, and 81.4 m s<sup>−1</sup>, respectively.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"31 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70012","citationCount":"0","resultStr":"{\"title\":\"Estimation of extreme wind speeds with different return periods in the Northwest Pacific\",\"authors\":\"Lisha Kong, Xiuzhi Zhang, Huanping Wu, Yu Li\",\"doi\":\"10.1002/met.70012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is vital to analyze extreme wind speed in marine engineering designs. However, due to the lack of observational data, it is impossible to establish the measured long-term wind speed series. This study simulates the annual hourly wind field of every tropical cyclone (TC) with a resolution of 5 km in the Northwest Pacific (NWP) from 1981 to 2020. On this basis, combined with the sea surface wind speed data observed by the satellites and the ships, the 40-year annual maximum wind speed series of NWP are established. The Gumbel, three-parameter Weibull (Weibull-3par), two-parameter Weibull (Weibull-2par), generalized extreme-value (GEV) distribution, and the two parameter estimation methods are used to estimate the extreme wind speeds with different return periods (RPs) at four typical locations in the NWP. Meanwhile, the effects of different extreme-value distributions and different parameter estimation methods on the estimation results are discussed. Subsequently, the best distribution and parameter estimation method for each grid in the NWP are determined by the goodness-of-fit test, and then the spatial distributions of extreme wind speeds with different RPs along with uncertainty estimates in the entire NWP are obtained. The results show that extreme wind speeds with RPs of 5, 25, 50, and 100 years in the east of Taiwan and Philippines can reach a maximum of 43.8, 60.8, 70.4, and 81.4 m s<sup>−1</sup>, respectively.</p>\",\"PeriodicalId\":49825,\"journal\":{\"name\":\"Meteorological Applications\",\"volume\":\"31 6\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteorological Applications\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/met.70012\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.70012","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
极端风速分析在海洋工程设计中具有重要意义。然而,由于缺乏观测资料,无法建立实测的长期风速序列。本文模拟了1981 ~ 2020年西北太平洋每一个分辨率为5 km的热带气旋(TC)的年逐时风场。在此基础上,结合卫星和船舶观测的海面风速资料,建立了NWP 40年最大风速序列。采用Gumbel、三参数威布尔(Weibull-3par)、二参数威布尔(Weibull-2par)、广义极值(GEV)分布和两种参数估计方法,对NWP 4个典型地点不同回归期的极端风速进行了估计。同时讨论了不同极值分布和不同参数估计方法对估计结果的影响。然后,通过拟合优度检验确定NWP中各网格的最佳分布和参数估计方法,得到不同RPs的极端风速在整个NWP中的空间分布及不确定性估计。结果表明:RPs为5、25、50和100 a的台湾和菲律宾东部极端风速最大值分别为43.8、60.8、70.4和81.4 m s−1;
Estimation of extreme wind speeds with different return periods in the Northwest Pacific
It is vital to analyze extreme wind speed in marine engineering designs. However, due to the lack of observational data, it is impossible to establish the measured long-term wind speed series. This study simulates the annual hourly wind field of every tropical cyclone (TC) with a resolution of 5 km in the Northwest Pacific (NWP) from 1981 to 2020. On this basis, combined with the sea surface wind speed data observed by the satellites and the ships, the 40-year annual maximum wind speed series of NWP are established. The Gumbel, three-parameter Weibull (Weibull-3par), two-parameter Weibull (Weibull-2par), generalized extreme-value (GEV) distribution, and the two parameter estimation methods are used to estimate the extreme wind speeds with different return periods (RPs) at four typical locations in the NWP. Meanwhile, the effects of different extreme-value distributions and different parameter estimation methods on the estimation results are discussed. Subsequently, the best distribution and parameter estimation method for each grid in the NWP are determined by the goodness-of-fit test, and then the spatial distributions of extreme wind speeds with different RPs along with uncertainty estimates in the entire NWP are obtained. The results show that extreme wind speeds with RPs of 5, 25, 50, and 100 years in the east of Taiwan and Philippines can reach a maximum of 43.8, 60.8, 70.4, and 81.4 m s−1, respectively.
期刊介绍:
The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including:
applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits;
forecasting, warning and service delivery techniques and methods;
weather hazards, their analysis and prediction;
performance, verification and value of numerical models and forecasting services;
practical applications of ocean and climate models;
education and training.