通过活结晶驱动的自组装控制二维血小板的纵横比和聚合物空间分布

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Tianlai Xia, Laihui Xiao, Kaiwen Sun, Julia Y. Rho, Yujie Xie, Sam J. Parkinson, Leire Sangroniz, Jian Zhang, Jiaping Lin, Alejandro J. Müller, Liang Gao, Andrew P. Dove* and Rachel K. O’Reilly*, 
{"title":"通过活结晶驱动的自组装控制二维血小板的纵横比和聚合物空间分布","authors":"Tianlai Xia,&nbsp;Laihui Xiao,&nbsp;Kaiwen Sun,&nbsp;Julia Y. Rho,&nbsp;Yujie Xie,&nbsp;Sam J. Parkinson,&nbsp;Leire Sangroniz,&nbsp;Jian Zhang,&nbsp;Jiaping Lin,&nbsp;Alejandro J. Müller,&nbsp;Liang Gao,&nbsp;Andrew P. Dove* and Rachel K. O’Reilly*,&nbsp;","doi":"10.1021/acs.macromol.4c0249610.1021/acs.macromol.4c02496","DOIUrl":null,"url":null,"abstract":"<p >The aspect ratios of nano- and micrometer-sized features in nature have evolved to enable specific characteristics that are finely tuned for optimizing strength, surface area, optics, and heat dissipation. Despite the importance of aspect ratios, precise control over the aspect ratios of anisotropic polymeric nanoparticles is challenging to achieve and the formation mechanisms by which they occur are not fully understood. In this study, using the crystallization-driven self-assembly (CDSA) process, we achieved two-dimensional (2D) platelets with precisely controlled aspect ratios through the rational compositional adjustment of various polycaprolactone (PCL)-based homopolymers (HP) and block copolymers (BCP). These polymer compositions exhibit distinct polymer crystallization rates, which allow for highly controlled aspect ratios and polymer spatial distribution in 2D platelets. Brownian dynamics (BD) simulations provided an in-depth understanding of the formation of 2D platelets. The BD simulations help us further confirm the nature of living epitaxial growth, simulate the structural order of polymer chains during the CDSA process, and demonstrate the influence of PCL length on the aspect ratio. Our work opens up new possibilities for a nuanced understanding of the interplay between polymer composition, crystallization rate, and morphology, providing a method for the controlled synthesis of 2D nanostructures.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"57 23","pages":"11210–11220 11210–11220"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.macromol.4c02496","citationCount":"0","resultStr":"{\"title\":\"Control over Aspect Ratio and Polymer Spatial Distribution of 2D Platelets via Living Crystallization-Driven Self-Assembly\",\"authors\":\"Tianlai Xia,&nbsp;Laihui Xiao,&nbsp;Kaiwen Sun,&nbsp;Julia Y. Rho,&nbsp;Yujie Xie,&nbsp;Sam J. Parkinson,&nbsp;Leire Sangroniz,&nbsp;Jian Zhang,&nbsp;Jiaping Lin,&nbsp;Alejandro J. Müller,&nbsp;Liang Gao,&nbsp;Andrew P. Dove* and Rachel K. O’Reilly*,&nbsp;\",\"doi\":\"10.1021/acs.macromol.4c0249610.1021/acs.macromol.4c02496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The aspect ratios of nano- and micrometer-sized features in nature have evolved to enable specific characteristics that are finely tuned for optimizing strength, surface area, optics, and heat dissipation. Despite the importance of aspect ratios, precise control over the aspect ratios of anisotropic polymeric nanoparticles is challenging to achieve and the formation mechanisms by which they occur are not fully understood. In this study, using the crystallization-driven self-assembly (CDSA) process, we achieved two-dimensional (2D) platelets with precisely controlled aspect ratios through the rational compositional adjustment of various polycaprolactone (PCL)-based homopolymers (HP) and block copolymers (BCP). These polymer compositions exhibit distinct polymer crystallization rates, which allow for highly controlled aspect ratios and polymer spatial distribution in 2D platelets. Brownian dynamics (BD) simulations provided an in-depth understanding of the formation of 2D platelets. The BD simulations help us further confirm the nature of living epitaxial growth, simulate the structural order of polymer chains during the CDSA process, and demonstrate the influence of PCL length on the aspect ratio. Our work opens up new possibilities for a nuanced understanding of the interplay between polymer composition, crystallization rate, and morphology, providing a method for the controlled synthesis of 2D nanostructures.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"57 23\",\"pages\":\"11210–11220 11210–11220\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.macromol.4c02496\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.4c02496\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.4c02496","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

自然界中纳米和微米尺寸的特征的长宽比已经进化到能够实现精细调整的特定特征,以优化强度、表面积、光学和散热。尽管纵横比很重要,但要实现对各向异性聚合物纳米颗粒纵横比的精确控制仍具有挑战性,其形成机制也尚未完全了解。在这项研究中,我们利用结晶驱动自组装(CDSA)工艺,通过合理调整各种聚己内酯(PCL)基均聚物(HP)和嵌段共聚物(BCP)的组成,获得了具有精确控制长宽比的二维(2D)血小板。这些聚合物组分表现出不同的聚合物结晶速率,从而可以高度控制宽高比和聚合物在二维血小板中的空间分布。布朗动力学(BD)模拟提供了对二维血小板形成的深入了解。BD模拟有助于我们进一步确认活外延生长的性质,模拟CDSA过程中聚合物链的结构顺序,并证明PCL长度对宽高比的影响。我们的工作为深入了解聚合物组成、结晶速率和形态之间的相互作用开辟了新的可能性,为控制二维纳米结构的合成提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control over Aspect Ratio and Polymer Spatial Distribution of 2D Platelets via Living Crystallization-Driven Self-Assembly

The aspect ratios of nano- and micrometer-sized features in nature have evolved to enable specific characteristics that are finely tuned for optimizing strength, surface area, optics, and heat dissipation. Despite the importance of aspect ratios, precise control over the aspect ratios of anisotropic polymeric nanoparticles is challenging to achieve and the formation mechanisms by which they occur are not fully understood. In this study, using the crystallization-driven self-assembly (CDSA) process, we achieved two-dimensional (2D) platelets with precisely controlled aspect ratios through the rational compositional adjustment of various polycaprolactone (PCL)-based homopolymers (HP) and block copolymers (BCP). These polymer compositions exhibit distinct polymer crystallization rates, which allow for highly controlled aspect ratios and polymer spatial distribution in 2D platelets. Brownian dynamics (BD) simulations provided an in-depth understanding of the formation of 2D platelets. The BD simulations help us further confirm the nature of living epitaxial growth, simulate the structural order of polymer chains during the CDSA process, and demonstrate the influence of PCL length on the aspect ratio. Our work opens up new possibilities for a nuanced understanding of the interplay between polymer composition, crystallization rate, and morphology, providing a method for the controlled synthesis of 2D nanostructures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信