Jón H. Eiríksson, Þórdís Þórarinsdóttir, Egill Gautason
{"title":"基因型羊和非基因型羊相对痒病易感性的预测育种值","authors":"Jón H. Eiríksson, Þórdís Þórarinsdóttir, Egill Gautason","doi":"10.1186/s12711-024-00947-x","DOIUrl":null,"url":null,"abstract":"Scrapie is an infectious prion disease in sheep. Selective breeding for resistant genotypes of the prion protein gene (PRNP) is an effective way to prevent scrapie outbreaks. Genotyping all selection candidates in a population is expensive but existing pedigree records can help infer the probabilities of genotypes in relatives of genotyped animals. We used linear models to predict allele content for the various PRNP alleles found in Icelandic sheep and compiled the available estimates of relative scrapie susceptibility (RSS) associated with PRNP genotypes from the literature. Using the predicted allele content and the genotypic RSS we calculated estimated breeding values (EBV) for RSS. We tested the predictions on simulated data under different scenarios that varied in the proportion of genotyped sheep, genotyping strategy, pedigree recording accuracy, genotyping error rates and assumed heritability of allele content. Prediction of allele content for rare alleles was less successful than for alleles with moderate frequencies. The accuracy of allele content and RSS EBV predictions was not affected by the assumed heritability, but the dispersion of prediction was affected. In a scenario where 40% of rams were genotyped and no errors in genotyping or recorded pedigree, the accuracy of RSS EBV for ungenotyped selection candidates was 0.49. If only 20% of rams were genotyped, or rams and ewes were genotyped randomly, or there were 10% pedigree errors, or there were 2% genotyping errors, the accuracy decreased by 0.07, 0.08, 0.03 and 0.04, respectively. With empirical data, the accuracy of RSS EBV for ungenotyped sheep was 0.46–0.65. A linear model for predicting allele content for the PRNP gene, combined with estimates of relative susceptibility associated with PRNP genotypes, can provide RSS EBV for scrapie resistance for ungenotyped selection candidates with accuracy up to 0.65. These RSS EBV can complement selection strategies based on PRNP genotypes, especially in populations where resistant genotypes are rare.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"54 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicted breeding values for relative scrapie susceptibility for genotyped and ungenotyped sheep\",\"authors\":\"Jón H. Eiríksson, Þórdís Þórarinsdóttir, Egill Gautason\",\"doi\":\"10.1186/s12711-024-00947-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scrapie is an infectious prion disease in sheep. Selective breeding for resistant genotypes of the prion protein gene (PRNP) is an effective way to prevent scrapie outbreaks. Genotyping all selection candidates in a population is expensive but existing pedigree records can help infer the probabilities of genotypes in relatives of genotyped animals. We used linear models to predict allele content for the various PRNP alleles found in Icelandic sheep and compiled the available estimates of relative scrapie susceptibility (RSS) associated with PRNP genotypes from the literature. Using the predicted allele content and the genotypic RSS we calculated estimated breeding values (EBV) for RSS. We tested the predictions on simulated data under different scenarios that varied in the proportion of genotyped sheep, genotyping strategy, pedigree recording accuracy, genotyping error rates and assumed heritability of allele content. Prediction of allele content for rare alleles was less successful than for alleles with moderate frequencies. The accuracy of allele content and RSS EBV predictions was not affected by the assumed heritability, but the dispersion of prediction was affected. In a scenario where 40% of rams were genotyped and no errors in genotyping or recorded pedigree, the accuracy of RSS EBV for ungenotyped selection candidates was 0.49. If only 20% of rams were genotyped, or rams and ewes were genotyped randomly, or there were 10% pedigree errors, or there were 2% genotyping errors, the accuracy decreased by 0.07, 0.08, 0.03 and 0.04, respectively. With empirical data, the accuracy of RSS EBV for ungenotyped sheep was 0.46–0.65. A linear model for predicting allele content for the PRNP gene, combined with estimates of relative susceptibility associated with PRNP genotypes, can provide RSS EBV for scrapie resistance for ungenotyped selection candidates with accuracy up to 0.65. These RSS EBV can complement selection strategies based on PRNP genotypes, especially in populations where resistant genotypes are rare.\",\"PeriodicalId\":55120,\"journal\":{\"name\":\"Genetics Selection Evolution\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics Selection Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12711-024-00947-x\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-024-00947-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Predicted breeding values for relative scrapie susceptibility for genotyped and ungenotyped sheep
Scrapie is an infectious prion disease in sheep. Selective breeding for resistant genotypes of the prion protein gene (PRNP) is an effective way to prevent scrapie outbreaks. Genotyping all selection candidates in a population is expensive but existing pedigree records can help infer the probabilities of genotypes in relatives of genotyped animals. We used linear models to predict allele content for the various PRNP alleles found in Icelandic sheep and compiled the available estimates of relative scrapie susceptibility (RSS) associated with PRNP genotypes from the literature. Using the predicted allele content and the genotypic RSS we calculated estimated breeding values (EBV) for RSS. We tested the predictions on simulated data under different scenarios that varied in the proportion of genotyped sheep, genotyping strategy, pedigree recording accuracy, genotyping error rates and assumed heritability of allele content. Prediction of allele content for rare alleles was less successful than for alleles with moderate frequencies. The accuracy of allele content and RSS EBV predictions was not affected by the assumed heritability, but the dispersion of prediction was affected. In a scenario where 40% of rams were genotyped and no errors in genotyping or recorded pedigree, the accuracy of RSS EBV for ungenotyped selection candidates was 0.49. If only 20% of rams were genotyped, or rams and ewes were genotyped randomly, or there were 10% pedigree errors, or there were 2% genotyping errors, the accuracy decreased by 0.07, 0.08, 0.03 and 0.04, respectively. With empirical data, the accuracy of RSS EBV for ungenotyped sheep was 0.46–0.65. A linear model for predicting allele content for the PRNP gene, combined with estimates of relative susceptibility associated with PRNP genotypes, can provide RSS EBV for scrapie resistance for ungenotyped selection candidates with accuracy up to 0.65. These RSS EBV can complement selection strategies based on PRNP genotypes, especially in populations where resistant genotypes are rare.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.