SyntheVAEiser:利用基于 VAE 的基因表达样本生成增强传统机器学习方法,改进癌症亚型预测

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Brian Karlberg, Raphael Kirchgaessner, Jordan Lee, Matthew Peterkort, Liam Beckman, Jeremy Goecks, Kyle Ellrott
{"title":"SyntheVAEiser:利用基于 VAE 的基因表达样本生成增强传统机器学习方法,改进癌症亚型预测","authors":"Brian Karlberg, Raphael Kirchgaessner, Jordan Lee, Matthew Peterkort, Liam Beckman, Jeremy Goecks, Kyle Ellrott","doi":"10.1186/s13059-024-03431-3","DOIUrl":null,"url":null,"abstract":"The accuracy of machine learning methods is often limited by the amount of training data that is available. We proposed to improve machine learning training regimes by augmenting datasets with synthetically generated samples. We present a method for synthesizing gene expression samples and test the system’s capabilities for improving the accuracy of categorical prediction of cancer subtypes. We developed SyntheVAEiser, a variational autoencoder based tool that was trained and tested on over 8000 cancer samples. We have shown that this technique can be used to augment machine learning tasks and increase performance of recognition of underrepresented cohorts.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"23 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SyntheVAEiser: augmenting traditional machine learning methods with VAE-based gene expression sample generation for improved cancer subtype predictions\",\"authors\":\"Brian Karlberg, Raphael Kirchgaessner, Jordan Lee, Matthew Peterkort, Liam Beckman, Jeremy Goecks, Kyle Ellrott\",\"doi\":\"10.1186/s13059-024-03431-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy of machine learning methods is often limited by the amount of training data that is available. We proposed to improve machine learning training regimes by augmenting datasets with synthetically generated samples. We present a method for synthesizing gene expression samples and test the system’s capabilities for improving the accuracy of categorical prediction of cancer subtypes. We developed SyntheVAEiser, a variational autoencoder based tool that was trained and tested on over 8000 cancer samples. We have shown that this technique can be used to augment machine learning tasks and increase performance of recognition of underrepresented cohorts.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03431-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03431-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
SyntheVAEiser: augmenting traditional machine learning methods with VAE-based gene expression sample generation for improved cancer subtype predictions
The accuracy of machine learning methods is often limited by the amount of training data that is available. We proposed to improve machine learning training regimes by augmenting datasets with synthetically generated samples. We present a method for synthesizing gene expression samples and test the system’s capabilities for improving the accuracy of categorical prediction of cancer subtypes. We developed SyntheVAEiser, a variational autoencoder based tool that was trained and tested on over 8000 cancer samples. We have shown that this technique can be used to augment machine learning tasks and increase performance of recognition of underrepresented cohorts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信