半线上的高阶二次NLS方程。

IF 1.1 3区 数学 Q1 MATHEMATICS
Journal of Evolution Equations Pub Date : 2025-01-01 Epub Date: 2024-12-15 DOI:10.1007/s00028-024-01034-w
A Alexandrou Himonas, Fangchi Yan
{"title":"半线上的高阶二次NLS方程。","authors":"A Alexandrou Himonas, Fangchi Yan","doi":"10.1007/s00028-024-01034-w","DOIUrl":null,"url":null,"abstract":"<p><p>The well-posedness of the initial-boundary value problem for higher-order quadratic nonlinear Schrödinger equations on the half-line is studied by utilizing the Fokas solution formula for the corresponding linear problem. Using this formula, linear estimates are derived in Bourgain spaces for initial data in spatial Sobolev spaces on the half-line and boundary data in temporal Sobolev spaces suggested by the time regularity of the linear initial value problem. Then, the needed bilinear estimates are derived and used for showing that the iteration map defined via the Fokas solution formula is a contraction in appropriate solution spaces. Finally, well-posedness is established for optimal Sobolev exponents in a way analogous to the case of the initial value problem on the whole line with solutions in classical Bourgain spaces.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"25 1","pages":"8"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646971/pdf/","citationCount":"0","resultStr":"{\"title\":\"A higher-order quadratic NLS equation on the half-line.\",\"authors\":\"A Alexandrou Himonas, Fangchi Yan\",\"doi\":\"10.1007/s00028-024-01034-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The well-posedness of the initial-boundary value problem for higher-order quadratic nonlinear Schrödinger equations on the half-line is studied by utilizing the Fokas solution formula for the corresponding linear problem. Using this formula, linear estimates are derived in Bourgain spaces for initial data in spatial Sobolev spaces on the half-line and boundary data in temporal Sobolev spaces suggested by the time regularity of the linear initial value problem. Then, the needed bilinear estimates are derived and used for showing that the iteration map defined via the Fokas solution formula is a contraction in appropriate solution spaces. Finally, well-posedness is established for optimal Sobolev exponents in a way analogous to the case of the initial value problem on the whole line with solutions in classical Bourgain spaces.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":\"25 1\",\"pages\":\"8\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646971/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-01034-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-01034-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用线性问题的Fokas解公式,研究了半线上高阶二次非线性Schrödinger方程初边值问题的适定性。根据线性初值问题的时间正则性,给出了空间Sobolev空间中半直线上的初始数据和时间Sobolev空间中的边界数据在Bourgain空间中的线性估计。然后,导出了所需的双线性估计,并用于证明通过Fokas解公式定义的迭代映射是适当解空间中的收缩。最后,用与经典布尔甘空间中具有解的整线上的初值问题类似的方法,建立了最优Sobolev指数的适定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A higher-order quadratic NLS equation on the half-line.

The well-posedness of the initial-boundary value problem for higher-order quadratic nonlinear Schrödinger equations on the half-line is studied by utilizing the Fokas solution formula for the corresponding linear problem. Using this formula, linear estimates are derived in Bourgain spaces for initial data in spatial Sobolev spaces on the half-line and boundary data in temporal Sobolev spaces suggested by the time regularity of the linear initial value problem. Then, the needed bilinear estimates are derived and used for showing that the iteration map defined via the Fokas solution formula is a contraction in appropriate solution spaces. Finally, well-posedness is established for optimal Sobolev exponents in a way analogous to the case of the initial value problem on the whole line with solutions in classical Bourgain spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信