Hong Zhang, Zhikang Lu, Peicong Gong, Shilong Zhang, Xiaoquan Yang, Xiangning Li, Zhao Feng, Anan Li, Chi Xiao
{"title":"基于微分导向滤波神经网络的高通量介观光学成像数据处理与分析。","authors":"Hong Zhang, Zhikang Lu, Peicong Gong, Shilong Zhang, Xiaoquan Yang, Xiangning Li, Zhao Feng, Anan Li, Chi Xiao","doi":"10.1186/s40708-024-00246-7","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput mesoscopic optical imaging technology has tremendously boosted the efficiency of procuring massive mesoscopic datasets from mouse brains. Constrained by the imaging field of view, the image strips obtained by such technologies typically require further processing, such as cross-sectional stitching, artifact removal, and signal area cropping, to meet the requirements of subsequent analyse. However, obtaining a batch of raw array mouse brain data at a resolution of <math><mrow><mn>0.65</mn> <mo>×</mo> <mn>0.65</mn> <mo>×</mo> <mn>3</mn> <mspace></mspace> <mi>μ</mi> <msup><mtext>m</mtext> <mn>3</mn></msup> </mrow> </math> can reach 220TB, and the cropping of the outer contour areas in the disjointed processing still relies on manual visual observation, which consumes substantial computational resources and labor costs. In this paper, we design an efficient deep differential guided filtering module (DDGF) by fusing multi-scale iterative differential guided filtering with deep learning, which effectively refines image details while mitigating background noise. Subsequently, by amalgamating DDGF with deep learning network, we propose a lightweight deep differential guided filtering segmentation network (DDGF-SegNet), which demonstrates robust performance on our dataset, achieving Dice of 0.92, Precision of 0.98, Recall of 0.91, and Jaccard index of 0.86. Building on the segmentation, we utilize connectivity analysis for ascertaining three-dimensional spatial orientation of each brain within the array. Furthermore, we streamline the entire processing workflow by developing an automated pipeline optimized for cluster-based message passing interface(MPI) parallel computation, which reduces the processing time for a mouse brain dataset to a mere 1.1 h, enhancing manual efficiency by 25 times and overall data processing efficiency by 2.4 times, paving the way for enhancing the efficiency of big data processing and parsing for high-throughput mesoscopic optical imaging techniques.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"32"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655801/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-throughput mesoscopic optical imaging data processing and parsing using differential-guided filtered neural networks.\",\"authors\":\"Hong Zhang, Zhikang Lu, Peicong Gong, Shilong Zhang, Xiaoquan Yang, Xiangning Li, Zhao Feng, Anan Li, Chi Xiao\",\"doi\":\"10.1186/s40708-024-00246-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-throughput mesoscopic optical imaging technology has tremendously boosted the efficiency of procuring massive mesoscopic datasets from mouse brains. Constrained by the imaging field of view, the image strips obtained by such technologies typically require further processing, such as cross-sectional stitching, artifact removal, and signal area cropping, to meet the requirements of subsequent analyse. However, obtaining a batch of raw array mouse brain data at a resolution of <math><mrow><mn>0.65</mn> <mo>×</mo> <mn>0.65</mn> <mo>×</mo> <mn>3</mn> <mspace></mspace> <mi>μ</mi> <msup><mtext>m</mtext> <mn>3</mn></msup> </mrow> </math> can reach 220TB, and the cropping of the outer contour areas in the disjointed processing still relies on manual visual observation, which consumes substantial computational resources and labor costs. In this paper, we design an efficient deep differential guided filtering module (DDGF) by fusing multi-scale iterative differential guided filtering with deep learning, which effectively refines image details while mitigating background noise. Subsequently, by amalgamating DDGF with deep learning network, we propose a lightweight deep differential guided filtering segmentation network (DDGF-SegNet), which demonstrates robust performance on our dataset, achieving Dice of 0.92, Precision of 0.98, Recall of 0.91, and Jaccard index of 0.86. Building on the segmentation, we utilize connectivity analysis for ascertaining three-dimensional spatial orientation of each brain within the array. Furthermore, we streamline the entire processing workflow by developing an automated pipeline optimized for cluster-based message passing interface(MPI) parallel computation, which reduces the processing time for a mouse brain dataset to a mere 1.1 h, enhancing manual efficiency by 25 times and overall data processing efficiency by 2.4 times, paving the way for enhancing the efficiency of big data processing and parsing for high-throughput mesoscopic optical imaging techniques.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"11 1\",\"pages\":\"32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655801/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-024-00246-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00246-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
High-throughput mesoscopic optical imaging data processing and parsing using differential-guided filtered neural networks.
High-throughput mesoscopic optical imaging technology has tremendously boosted the efficiency of procuring massive mesoscopic datasets from mouse brains. Constrained by the imaging field of view, the image strips obtained by such technologies typically require further processing, such as cross-sectional stitching, artifact removal, and signal area cropping, to meet the requirements of subsequent analyse. However, obtaining a batch of raw array mouse brain data at a resolution of can reach 220TB, and the cropping of the outer contour areas in the disjointed processing still relies on manual visual observation, which consumes substantial computational resources and labor costs. In this paper, we design an efficient deep differential guided filtering module (DDGF) by fusing multi-scale iterative differential guided filtering with deep learning, which effectively refines image details while mitigating background noise. Subsequently, by amalgamating DDGF with deep learning network, we propose a lightweight deep differential guided filtering segmentation network (DDGF-SegNet), which demonstrates robust performance on our dataset, achieving Dice of 0.92, Precision of 0.98, Recall of 0.91, and Jaccard index of 0.86. Building on the segmentation, we utilize connectivity analysis for ascertaining three-dimensional spatial orientation of each brain within the array. Furthermore, we streamline the entire processing workflow by developing an automated pipeline optimized for cluster-based message passing interface(MPI) parallel computation, which reduces the processing time for a mouse brain dataset to a mere 1.1 h, enhancing manual efficiency by 25 times and overall data processing efficiency by 2.4 times, paving the way for enhancing the efficiency of big data processing and parsing for high-throughput mesoscopic optical imaging techniques.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing