Maria Luigia Natalia De Bonis, Giuseppe Fasano, Angela Lombardi, Carmelo Ardito, Antonio Ferrara, Eugenio Di Sciascio, Tommaso Di Noia
{"title":"可解释的脑年龄预测:形态计量学和深度学习管道的比较评估。","authors":"Maria Luigia Natalia De Bonis, Giuseppe Fasano, Angela Lombardi, Carmelo Ardito, Antonio Ferrara, Eugenio Di Sciascio, Tommaso Di Noia","doi":"10.1186/s40708-024-00244-9","DOIUrl":null,"url":null,"abstract":"<p><p>Brain age, a biomarker reflecting brain health relative to chronological age, is increasingly used in neuroimaging to detect early signs of neurodegenerative diseases and support personalized treatment plans. Two primary approaches for brain age prediction have emerged: morphometric feature extraction from MRI scans and deep learning (DL) applied to raw MRI data. However, a systematic comparison of these methods regarding performance, interpretability, and clinical utility has been limited. In this study, we present a comparative evaluation of two pipelines: one using morphometric features from FreeSurfer and the other employing 3D convolutional neural networks (CNNs). Using a multisite neuroimaging dataset, we assessed both model performance and the interpretability of predictions through eXplainable Artificial Intelligence (XAI) methods, applying SHAP to the feature-based pipeline and Grad-CAM and DeepSHAP to the CNN-based pipeline. Our results show comparable performance between the two pipelines in Leave-One-Site-Out (LOSO) validation, achieving state-of-the-art performance on the independent test set ( <math><mrow><mi>M</mi> <mi>A</mi> <mi>E</mi> <mo>=</mo> <mn>3.21</mn></mrow> </math> with DNN and morphometric features and <math><mrow><mi>M</mi> <mi>A</mi> <mi>E</mi> <mo>=</mo> <mn>3.08</mn></mrow> </math> with a DenseNet-121 architecture). SHAP provided the most consistent and interpretable results, while DeepSHAP exhibited greater variability. Further work is needed to assess the clinical utility of Grad-CAM. This study addresses a critical gap by systematically comparing the interpretability of multiple XAI methods across distinct brain age prediction pipelines. Our findings underscore the importance of integrating XAI into clinical practice, offering insights into how XAI outputs vary and their potential utility for clinicians.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"33"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655902/pdf/","citationCount":"0","resultStr":"{\"title\":\"Explainable brain age prediction: a comparative evaluation of morphometric and deep learning pipelines.\",\"authors\":\"Maria Luigia Natalia De Bonis, Giuseppe Fasano, Angela Lombardi, Carmelo Ardito, Antonio Ferrara, Eugenio Di Sciascio, Tommaso Di Noia\",\"doi\":\"10.1186/s40708-024-00244-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain age, a biomarker reflecting brain health relative to chronological age, is increasingly used in neuroimaging to detect early signs of neurodegenerative diseases and support personalized treatment plans. Two primary approaches for brain age prediction have emerged: morphometric feature extraction from MRI scans and deep learning (DL) applied to raw MRI data. However, a systematic comparison of these methods regarding performance, interpretability, and clinical utility has been limited. In this study, we present a comparative evaluation of two pipelines: one using morphometric features from FreeSurfer and the other employing 3D convolutional neural networks (CNNs). Using a multisite neuroimaging dataset, we assessed both model performance and the interpretability of predictions through eXplainable Artificial Intelligence (XAI) methods, applying SHAP to the feature-based pipeline and Grad-CAM and DeepSHAP to the CNN-based pipeline. Our results show comparable performance between the two pipelines in Leave-One-Site-Out (LOSO) validation, achieving state-of-the-art performance on the independent test set ( <math><mrow><mi>M</mi> <mi>A</mi> <mi>E</mi> <mo>=</mo> <mn>3.21</mn></mrow> </math> with DNN and morphometric features and <math><mrow><mi>M</mi> <mi>A</mi> <mi>E</mi> <mo>=</mo> <mn>3.08</mn></mrow> </math> with a DenseNet-121 architecture). SHAP provided the most consistent and interpretable results, while DeepSHAP exhibited greater variability. Further work is needed to assess the clinical utility of Grad-CAM. This study addresses a critical gap by systematically comparing the interpretability of multiple XAI methods across distinct brain age prediction pipelines. Our findings underscore the importance of integrating XAI into clinical practice, offering insights into how XAI outputs vary and their potential utility for clinicians.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"11 1\",\"pages\":\"33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655902/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-024-00244-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00244-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Explainable brain age prediction: a comparative evaluation of morphometric and deep learning pipelines.
Brain age, a biomarker reflecting brain health relative to chronological age, is increasingly used in neuroimaging to detect early signs of neurodegenerative diseases and support personalized treatment plans. Two primary approaches for brain age prediction have emerged: morphometric feature extraction from MRI scans and deep learning (DL) applied to raw MRI data. However, a systematic comparison of these methods regarding performance, interpretability, and clinical utility has been limited. In this study, we present a comparative evaluation of two pipelines: one using morphometric features from FreeSurfer and the other employing 3D convolutional neural networks (CNNs). Using a multisite neuroimaging dataset, we assessed both model performance and the interpretability of predictions through eXplainable Artificial Intelligence (XAI) methods, applying SHAP to the feature-based pipeline and Grad-CAM and DeepSHAP to the CNN-based pipeline. Our results show comparable performance between the two pipelines in Leave-One-Site-Out (LOSO) validation, achieving state-of-the-art performance on the independent test set ( with DNN and morphometric features and with a DenseNet-121 architecture). SHAP provided the most consistent and interpretable results, while DeepSHAP exhibited greater variability. Further work is needed to assess the clinical utility of Grad-CAM. This study addresses a critical gap by systematically comparing the interpretability of multiple XAI methods across distinct brain age prediction pipelines. Our findings underscore the importance of integrating XAI into clinical practice, offering insights into how XAI outputs vary and their potential utility for clinicians.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing