{"title":"LMOD1 Exerts a Tumor-Suppressive Role in Breast Cancer by Restraining the JAK2/STAT3 Pathway","authors":"Xiansong Fang, Xiaoyun Wen, Ya Hou, Liang Zhou, Yingjie Jiang, Yu Chen","doi":"10.1002/jbt.70092","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Breast cancer has seriously affected women's physical and mental health. This investigation aims at screening differentially expressed genes (DEGs) in breast cancer and illuminating the potential biological functions of Leiomodin 1 (LMOD1) and its behind mechanisms against breast cancer. The common DEGs (co-DEGs) between the GSE22820 and GSE29431 data sets and pivotal genes were screened out using bioinformatics methods. The biological roles of LMOD1 overexpression on malignant phenotypes were validated by functional assays and the impact on fatty acid synthesis was also elucidated in breast cancer cell lines. Additionally, colivelin, a STAT3 activator, was applied for further investigating the role of LMOD1 on the JAK2/STAT3 pathway in vitro. A total of 208 co-DEGs and 5 focal genes were screened through bioinformatics analysis, and 5 focal genes were downregulated in breast cancer cell lines. LMOD1 overexpression retarded proliferative, migratory, invasive capabilities of breast cancer cells. LMOD1 overexpression suppressed fatty acid synthesis. Furthermore, the inhibitory effects on malignant phenotypes of breast cancer cells with LMOD1 overexpression were partially abolished after colivelin treatment. Additionally, LMOD1 could impede fatty acid synthesis in breast cancer cells. Our study highlighted LMOD1 exerted as a tumor-suppressive role in breast cancer, which was correlated with restraining the JAK2/STAT3 pathway activation.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70092","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
LMOD1 Exerts a Tumor-Suppressive Role in Breast Cancer by Restraining the JAK2/STAT3 Pathway
Breast cancer has seriously affected women's physical and mental health. This investigation aims at screening differentially expressed genes (DEGs) in breast cancer and illuminating the potential biological functions of Leiomodin 1 (LMOD1) and its behind mechanisms against breast cancer. The common DEGs (co-DEGs) between the GSE22820 and GSE29431 data sets and pivotal genes were screened out using bioinformatics methods. The biological roles of LMOD1 overexpression on malignant phenotypes were validated by functional assays and the impact on fatty acid synthesis was also elucidated in breast cancer cell lines. Additionally, colivelin, a STAT3 activator, was applied for further investigating the role of LMOD1 on the JAK2/STAT3 pathway in vitro. A total of 208 co-DEGs and 5 focal genes were screened through bioinformatics analysis, and 5 focal genes were downregulated in breast cancer cell lines. LMOD1 overexpression retarded proliferative, migratory, invasive capabilities of breast cancer cells. LMOD1 overexpression suppressed fatty acid synthesis. Furthermore, the inhibitory effects on malignant phenotypes of breast cancer cells with LMOD1 overexpression were partially abolished after colivelin treatment. Additionally, LMOD1 could impede fatty acid synthesis in breast cancer cells. Our study highlighted LMOD1 exerted as a tumor-suppressive role in breast cancer, which was correlated with restraining the JAK2/STAT3 pathway activation.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.