Shrawani Lamichhane, Jo-Eun Seo, Ji Hoon Jeong, Sooyeun Lee, Sangkil Lee
{"title":"理想的动物模型,根据多方面的机制和特点在神经系统疾病:目前和挑战。","authors":"Shrawani Lamichhane, Jo-Eun Seo, Ji Hoon Jeong, Sooyeun Lee, Sangkil Lee","doi":"10.1007/s12272-024-01527-9","DOIUrl":null,"url":null,"abstract":"<p><p>Neurological disorders, encompassing conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), pose a significant global health challenge, affecting millions worldwide. With an aging population and increased life expectancy, the prevalence of these disorders is escalating rapidly, leading to substantial economic burdens exceeding trillions of dollars annually. Animal models play a crucial role in understanding the underlying mechanisms of these disorders and developing effective treatments. Various species, including rodents, non-human primates, and fruit flies, are utilized to replicate specific aspects of human neurological conditions. However, selecting the ideal animal model requires careful consideration of its proximity to human disease conditions and its ability to mimic disease pathobiology and pharmacological responses. An Animal Model Quality Assessment (AMQA) tool has been developed to facilitate this selection process, focusing on assessing models based on their similarity to human conditions and disease pathobiology. Therefore, integrating intrinsic and extrinsic factors linked to the disease into the study's objectives aids in constructing a biological information matrix for comparing disease progression between the animal model and human disease. Ultimately, selecting an ideal animal disease model depends on its predictive, face, and construct validity, ensuring relevance and reliability in translational research efforts.</p>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":" ","pages":"62-88"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ideal animal models according to multifaceted mechanisms and peculiarities in neurological disorders: present and challenges.\",\"authors\":\"Shrawani Lamichhane, Jo-Eun Seo, Ji Hoon Jeong, Sooyeun Lee, Sangkil Lee\",\"doi\":\"10.1007/s12272-024-01527-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurological disorders, encompassing conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), pose a significant global health challenge, affecting millions worldwide. With an aging population and increased life expectancy, the prevalence of these disorders is escalating rapidly, leading to substantial economic burdens exceeding trillions of dollars annually. Animal models play a crucial role in understanding the underlying mechanisms of these disorders and developing effective treatments. Various species, including rodents, non-human primates, and fruit flies, are utilized to replicate specific aspects of human neurological conditions. However, selecting the ideal animal model requires careful consideration of its proximity to human disease conditions and its ability to mimic disease pathobiology and pharmacological responses. An Animal Model Quality Assessment (AMQA) tool has been developed to facilitate this selection process, focusing on assessing models based on their similarity to human conditions and disease pathobiology. Therefore, integrating intrinsic and extrinsic factors linked to the disease into the study's objectives aids in constructing a biological information matrix for comparing disease progression between the animal model and human disease. Ultimately, selecting an ideal animal disease model depends on its predictive, face, and construct validity, ensuring relevance and reliability in translational research efforts.</p>\",\"PeriodicalId\":8287,\"journal\":{\"name\":\"Archives of Pharmacal Research\",\"volume\":\" \",\"pages\":\"62-88\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Pharmacal Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12272-024-01527-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmacal Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12272-024-01527-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Ideal animal models according to multifaceted mechanisms and peculiarities in neurological disorders: present and challenges.
Neurological disorders, encompassing conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), pose a significant global health challenge, affecting millions worldwide. With an aging population and increased life expectancy, the prevalence of these disorders is escalating rapidly, leading to substantial economic burdens exceeding trillions of dollars annually. Animal models play a crucial role in understanding the underlying mechanisms of these disorders and developing effective treatments. Various species, including rodents, non-human primates, and fruit flies, are utilized to replicate specific aspects of human neurological conditions. However, selecting the ideal animal model requires careful consideration of its proximity to human disease conditions and its ability to mimic disease pathobiology and pharmacological responses. An Animal Model Quality Assessment (AMQA) tool has been developed to facilitate this selection process, focusing on assessing models based on their similarity to human conditions and disease pathobiology. Therefore, integrating intrinsic and extrinsic factors linked to the disease into the study's objectives aids in constructing a biological information matrix for comparing disease progression between the animal model and human disease. Ultimately, selecting an ideal animal disease model depends on its predictive, face, and construct validity, ensuring relevance and reliability in translational research efforts.
期刊介绍:
Archives of Pharmacal Research is the official journal of the Pharmaceutical Society of Korea and has been published since 1976. Archives of Pharmacal Research is an interdisciplinary journal devoted to the publication of original scientific research papers and reviews in the fields of drug discovery, drug development, and drug actions with a view to providing fundamental and novel information on drugs and drug candidates.