IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Tarek M. Elgindi, Yupei Huang
{"title":"Regular and Singular Steady States of the 2D Incompressible Euler Equations near the Bahouri–Chemin Patch","authors":"Tarek M. Elgindi,&nbsp;Yupei Huang","doi":"10.1007/s00205-024-02077-6","DOIUrl":null,"url":null,"abstract":"<div><p>We consider steady states of the two-dimensional incompressible Euler equations on <span>\\({\\mathbb {T}}^2\\)</span> and construct smooth and singular steady states around a particular singular steady state. More precisely, we construct families of smooth and singular steady solutions that converge to the Bahouri–Chemin patch.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02077-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了二维不可压缩欧拉方程在 \({\mathbb {T}}^2\) 上的稳态,并围绕一个特定的奇异稳态构建了平滑和奇异稳态。更确切地说,我们构建了收敛于 Bahouri-Chemin 补丁的平滑和奇异稳态解系列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regular and Singular Steady States of the 2D Incompressible Euler Equations near the Bahouri–Chemin Patch

We consider steady states of the two-dimensional incompressible Euler equations on \({\mathbb {T}}^2\) and construct smooth and singular steady states around a particular singular steady state. More precisely, we construct families of smooth and singular steady solutions that converge to the Bahouri–Chemin patch.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信