用于多类分类的两种新型深度多视角支持向量机

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yanfeng Li, Xijiong Xie
{"title":"用于多类分类的两种新型深度多视角支持向量机","authors":"Yanfeng Li,&nbsp;Xijiong Xie","doi":"10.1007/s10489-024-06126-1","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-view classification methods have better generalization performance compared to the single-view classification methods due to the consistency information from multiple views. In recent years, the combination of support vector machine (SVM) and multi-view learning has been widely studied. To improve the robustness of multi-view classification methods, emphasis has shifted to the integration of multi-view classification approaches with fully-connected and convolutional neural networks. A classical deep two-view classification method named deep SVM-2K is a combination of support vector machine with two stage kernel canonical correlation analysis (SVM-2K) and deep learning. However, limitations of deep SVM-2K are that it can not cope with multi-view classification and multiclass classification problems. To address these issues, we propose two novel deep multi-view models named deep multi-view support vector machine (DMVSVM) for multiclass classification. DMVSVM uses the learned features by auto-encoder (AE) or deep neural network (DNN) to train the SVM classifier for each view. The two models then impose some constraints to make the output of the multi-view SVM classifiers as consistent as possible, which used to exploring intrinsic relations. Experiments performed on different real-word datasets show the effectiveness of our proposed approaches.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two novel deep multi-view support vector machines for multiclass classification\",\"authors\":\"Yanfeng Li,&nbsp;Xijiong Xie\",\"doi\":\"10.1007/s10489-024-06126-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-view classification methods have better generalization performance compared to the single-view classification methods due to the consistency information from multiple views. In recent years, the combination of support vector machine (SVM) and multi-view learning has been widely studied. To improve the robustness of multi-view classification methods, emphasis has shifted to the integration of multi-view classification approaches with fully-connected and convolutional neural networks. A classical deep two-view classification method named deep SVM-2K is a combination of support vector machine with two stage kernel canonical correlation analysis (SVM-2K) and deep learning. However, limitations of deep SVM-2K are that it can not cope with multi-view classification and multiclass classification problems. To address these issues, we propose two novel deep multi-view models named deep multi-view support vector machine (DMVSVM) for multiclass classification. DMVSVM uses the learned features by auto-encoder (AE) or deep neural network (DNN) to train the SVM classifier for each view. The two models then impose some constraints to make the output of the multi-view SVM classifiers as consistent as possible, which used to exploring intrinsic relations. Experiments performed on different real-word datasets show the effectiveness of our proposed approaches.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 2\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06126-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06126-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于多视图信息的一致性,多视图分类方法比单视图分类方法具有更好的泛化性能。近年来,支持向量机(SVM)与多视图学习的结合得到了广泛的研究。为了提高多视图分类方法的鲁棒性,重点已经转移到多视图分类方法与全连接和卷积神经网络的集成上。深度SVM-2K是一种经典的深度二视图分类方法,它将支持向量机与两阶段核典型相关分析(SVM-2K)和深度学习相结合。然而,深度SVM-2K的局限性在于它不能处理多视图分类和多类分类问题。为了解决这些问题,我们提出了两种新的深度多视图模型——深度多视图支持向量机(DMVSVM)。DMVSVM使用自编码器(AE)或深度神经网络(DNN)学习到的特征对每个视图训练SVM分类器。然后,两个模型施加一些约束,使多视图SVM分类器的输出尽可能一致,用于探索内在关系。在不同的真实数据集上进行的实验表明了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two novel deep multi-view support vector machines for multiclass classification

Two novel deep multi-view support vector machines for multiclass classification

Multi-view classification methods have better generalization performance compared to the single-view classification methods due to the consistency information from multiple views. In recent years, the combination of support vector machine (SVM) and multi-view learning has been widely studied. To improve the robustness of multi-view classification methods, emphasis has shifted to the integration of multi-view classification approaches with fully-connected and convolutional neural networks. A classical deep two-view classification method named deep SVM-2K is a combination of support vector machine with two stage kernel canonical correlation analysis (SVM-2K) and deep learning. However, limitations of deep SVM-2K are that it can not cope with multi-view classification and multiclass classification problems. To address these issues, we propose two novel deep multi-view models named deep multi-view support vector machine (DMVSVM) for multiclass classification. DMVSVM uses the learned features by auto-encoder (AE) or deep neural network (DNN) to train the SVM classifier for each view. The two models then impose some constraints to make the output of the multi-view SVM classifiers as consistent as possible, which used to exploring intrinsic relations. Experiments performed on different real-word datasets show the effectiveness of our proposed approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信