{"title":"用于多类分类的两种新型深度多视角支持向量机","authors":"Yanfeng Li, Xijiong Xie","doi":"10.1007/s10489-024-06126-1","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-view classification methods have better generalization performance compared to the single-view classification methods due to the consistency information from multiple views. In recent years, the combination of support vector machine (SVM) and multi-view learning has been widely studied. To improve the robustness of multi-view classification methods, emphasis has shifted to the integration of multi-view classification approaches with fully-connected and convolutional neural networks. A classical deep two-view classification method named deep SVM-2K is a combination of support vector machine with two stage kernel canonical correlation analysis (SVM-2K) and deep learning. However, limitations of deep SVM-2K are that it can not cope with multi-view classification and multiclass classification problems. To address these issues, we propose two novel deep multi-view models named deep multi-view support vector machine (DMVSVM) for multiclass classification. DMVSVM uses the learned features by auto-encoder (AE) or deep neural network (DNN) to train the SVM classifier for each view. The two models then impose some constraints to make the output of the multi-view SVM classifiers as consistent as possible, which used to exploring intrinsic relations. Experiments performed on different real-word datasets show the effectiveness of our proposed approaches.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two novel deep multi-view support vector machines for multiclass classification\",\"authors\":\"Yanfeng Li, Xijiong Xie\",\"doi\":\"10.1007/s10489-024-06126-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-view classification methods have better generalization performance compared to the single-view classification methods due to the consistency information from multiple views. In recent years, the combination of support vector machine (SVM) and multi-view learning has been widely studied. To improve the robustness of multi-view classification methods, emphasis has shifted to the integration of multi-view classification approaches with fully-connected and convolutional neural networks. A classical deep two-view classification method named deep SVM-2K is a combination of support vector machine with two stage kernel canonical correlation analysis (SVM-2K) and deep learning. However, limitations of deep SVM-2K are that it can not cope with multi-view classification and multiclass classification problems. To address these issues, we propose two novel deep multi-view models named deep multi-view support vector machine (DMVSVM) for multiclass classification. DMVSVM uses the learned features by auto-encoder (AE) or deep neural network (DNN) to train the SVM classifier for each view. The two models then impose some constraints to make the output of the multi-view SVM classifiers as consistent as possible, which used to exploring intrinsic relations. Experiments performed on different real-word datasets show the effectiveness of our proposed approaches.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 2\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06126-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06126-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Two novel deep multi-view support vector machines for multiclass classification
Multi-view classification methods have better generalization performance compared to the single-view classification methods due to the consistency information from multiple views. In recent years, the combination of support vector machine (SVM) and multi-view learning has been widely studied. To improve the robustness of multi-view classification methods, emphasis has shifted to the integration of multi-view classification approaches with fully-connected and convolutional neural networks. A classical deep two-view classification method named deep SVM-2K is a combination of support vector machine with two stage kernel canonical correlation analysis (SVM-2K) and deep learning. However, limitations of deep SVM-2K are that it can not cope with multi-view classification and multiclass classification problems. To address these issues, we propose two novel deep multi-view models named deep multi-view support vector machine (DMVSVM) for multiclass classification. DMVSVM uses the learned features by auto-encoder (AE) or deep neural network (DNN) to train the SVM classifier for each view. The two models then impose some constraints to make the output of the multi-view SVM classifiers as consistent as possible, which used to exploring intrinsic relations. Experiments performed on different real-word datasets show the effectiveness of our proposed approaches.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.