Blaž Bortolato, Jernej F. Kamenik, Michele Tammaro
{"title":"解析超高能宇宙射线中的(重)原初粒子","authors":"Blaž Bortolato, Jernej F. Kamenik, Michele Tammaro","doi":"10.1140/epjc/s10052-024-13663-z","DOIUrl":null,"url":null,"abstract":"<div><p>Measurements of ultra-high energy cosmic rays (UHECR) suggest a complex composition with significant contributions from heavy nuclei at the highest energies. We systematically explore how the selection and number of primary nuclei included in the analysis impact the inferred UHECR mass composition. Introducing a distance measure in the space of <span>\\(X_\\textrm{max}\\)</span> distribution moments, we demonstrate that limiting the analysis to a few primaries can introduce significant biases, particularly as observational data improves. We provide lists of primaries approximately equidistant in the new measure, which guaranty unbiased results at given statistical confidence. Additionally, we explore consistent inclusion of nuclei heavier than iron and up to plutonium, deriving first observational upper bounds on their contributions to UHECR with the Pierre Auger Open Data.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13663-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Resolution of (heavy) primaries in ultra high energy cosmic rays\",\"authors\":\"Blaž Bortolato, Jernej F. Kamenik, Michele Tammaro\",\"doi\":\"10.1140/epjc/s10052-024-13663-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Measurements of ultra-high energy cosmic rays (UHECR) suggest a complex composition with significant contributions from heavy nuclei at the highest energies. We systematically explore how the selection and number of primary nuclei included in the analysis impact the inferred UHECR mass composition. Introducing a distance measure in the space of <span>\\\\(X_\\\\textrm{max}\\\\)</span> distribution moments, we demonstrate that limiting the analysis to a few primaries can introduce significant biases, particularly as observational data improves. We provide lists of primaries approximately equidistant in the new measure, which guaranty unbiased results at given statistical confidence. Additionally, we explore consistent inclusion of nuclei heavier than iron and up to plutonium, deriving first observational upper bounds on their contributions to UHECR with the Pierre Auger Open Data.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"84 12\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13663-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-024-13663-z\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13663-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Resolution of (heavy) primaries in ultra high energy cosmic rays
Measurements of ultra-high energy cosmic rays (UHECR) suggest a complex composition with significant contributions from heavy nuclei at the highest energies. We systematically explore how the selection and number of primary nuclei included in the analysis impact the inferred UHECR mass composition. Introducing a distance measure in the space of \(X_\textrm{max}\) distribution moments, we demonstrate that limiting the analysis to a few primaries can introduce significant biases, particularly as observational data improves. We provide lists of primaries approximately equidistant in the new measure, which guaranty unbiased results at given statistical confidence. Additionally, we explore consistent inclusion of nuclei heavier than iron and up to plutonium, deriving first observational upper bounds on their contributions to UHECR with the Pierre Auger Open Data.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.