Theodoros Papalas, Andy N. Antzaras and Angeliki A. Lemonidou
{"title":"通过固定床反应器实验揭示用熔盐和 CaCO3 促进氧化镁的动态二氧化碳捕集性能†。","authors":"Theodoros Papalas, Andy N. Antzaras and Angeliki A. Lemonidou","doi":"10.1039/D4RE00432A","DOIUrl":null,"url":null,"abstract":"<p >Carbonate looping using MgO-based materials has recently ignited scientific interest for CO<small><sub>2</sub></small> capture at intermediate temperatures (275–375 °C), with the main limitation being the slow carbonation kinetics of MgO. Molten alkali nitrates and metal carbonates have been identified as promoters that provide an alternative reaction mechanism for an enhanced carbonation rate. However, the evaluation of the ability of these materials to effectively remove CO<small><sub>2</sub></small> from a gas feed under realistic reactor configurations is still required. This study investigated the CO<small><sub>2</sub></small> capture performance of magnesite-derived MgO promoted with limestone and molten Li, Na and K nitrates under carbonate looping conditions in a fixed bed reactor. The CO<small><sub>2</sub></small> capture efficiency was enhanced in the presence of H<small><sub>2</sub></small>O, by increasing the gas–solid contact time and by decreasing the carbonation temperature. The evaluation demonstrated that ∼75% CO<small><sub>2</sub></small> stripping of a gas feed with 30% CO<small><sub>2</sub></small> concentration at 275 °C and a space velocity of 300 h<small><sup>−1</sup></small> is possible, a performance that highlights and expands the potential and possible applications of MgO-based materials.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 168-176"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/re/d4re00432a?page=search","citationCount":"0","resultStr":"{\"title\":\"Unveiling the dynamic CO2 capture performance of MgO promoted with molten salts and CaCO3via fixed bed reactor experiments†\",\"authors\":\"Theodoros Papalas, Andy N. Antzaras and Angeliki A. Lemonidou\",\"doi\":\"10.1039/D4RE00432A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Carbonate looping using MgO-based materials has recently ignited scientific interest for CO<small><sub>2</sub></small> capture at intermediate temperatures (275–375 °C), with the main limitation being the slow carbonation kinetics of MgO. Molten alkali nitrates and metal carbonates have been identified as promoters that provide an alternative reaction mechanism for an enhanced carbonation rate. However, the evaluation of the ability of these materials to effectively remove CO<small><sub>2</sub></small> from a gas feed under realistic reactor configurations is still required. This study investigated the CO<small><sub>2</sub></small> capture performance of magnesite-derived MgO promoted with limestone and molten Li, Na and K nitrates under carbonate looping conditions in a fixed bed reactor. The CO<small><sub>2</sub></small> capture efficiency was enhanced in the presence of H<small><sub>2</sub></small>O, by increasing the gas–solid contact time and by decreasing the carbonation temperature. The evaluation demonstrated that ∼75% CO<small><sub>2</sub></small> stripping of a gas feed with 30% CO<small><sub>2</sub></small> concentration at 275 °C and a space velocity of 300 h<small><sup>−1</sup></small> is possible, a performance that highlights and expands the potential and possible applications of MgO-based materials.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 1\",\"pages\":\" 168-176\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/re/d4re00432a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00432a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00432a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
最近,使用MgO基材料的碳酸盐环引起了科学界对中温(275-375°C)下二氧化碳捕获的兴趣,主要限制是MgO的缓慢碳化动力学。熔融的碱硝酸盐和金属碳酸盐已被确定为促进剂,为提高碳化速率提供了一种替代的反应机制。然而,仍然需要评估这些材料在实际反应器配置下有效去除气体进料中CO2的能力。在固定床反应器中,研究了石灰石和熔融硝酸Li、Na和K促进的菱镁矿衍生MgO在碳酸盐环化条件下的CO2捕集性能。通过增加气固接触时间和降低碳化温度,可以提高CO2的捕获效率。评估表明,在275°C和300 h - 1的空速下,在30% CO2浓度的气体进料中提取~ 75% CO2是可能的,这一性能突出并扩大了mgo基材料的潜力和可能的应用。
Unveiling the dynamic CO2 capture performance of MgO promoted with molten salts and CaCO3via fixed bed reactor experiments†
Carbonate looping using MgO-based materials has recently ignited scientific interest for CO2 capture at intermediate temperatures (275–375 °C), with the main limitation being the slow carbonation kinetics of MgO. Molten alkali nitrates and metal carbonates have been identified as promoters that provide an alternative reaction mechanism for an enhanced carbonation rate. However, the evaluation of the ability of these materials to effectively remove CO2 from a gas feed under realistic reactor configurations is still required. This study investigated the CO2 capture performance of magnesite-derived MgO promoted with limestone and molten Li, Na and K nitrates under carbonate looping conditions in a fixed bed reactor. The CO2 capture efficiency was enhanced in the presence of H2O, by increasing the gas–solid contact time and by decreasing the carbonation temperature. The evaluation demonstrated that ∼75% CO2 stripping of a gas feed with 30% CO2 concentration at 275 °C and a space velocity of 300 h−1 is possible, a performance that highlights and expands the potential and possible applications of MgO-based materials.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.