基于 SISO 传递函数的成网储能系统交互建模与稳定性分析

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Kezan Zhang;Mengxuan Shi;Xia Chen;Dejun Shao;Youping Xu;Yin Chen
{"title":"基于 SISO 传递函数的成网储能系统交互建模与稳定性分析","authors":"Kezan Zhang;Mengxuan Shi;Xia Chen;Dejun Shao;Youping Xu;Yin Chen","doi":"10.1109/TSTE.2024.3471801","DOIUrl":null,"url":null,"abstract":"With the rapid expansion of photovoltaic (PV), grid-forming energy storage systems (GFM-ESS) have been widely employed for inertia response and voltage support to enhance the dynamic characteristics. Converters with different synchronization methods represent significant differences in dynamic behavior. The interactions between grid-forming (GFM) and grid-following (GFL) devices with multi-time scale control may lead to small-signal instability in hybrid systems. This paper investigates a grid-connected system comprising a grid-forming energy storage system and a grid-following PV system (GFL-PV). Based on single-input-single-output (SISO) transfer functions, a dynamic interaction model for the PV-ESS system is established. Combining the open-loop transfer functions of full-loop and sub-loop, the proposed model reveals how GFM-ESS modifies the dynamic characteristics of GFL-PV under weak grid conditions. Subsequently, the impact of different control loops and parameters on the small-signal stability of the system is analyzed. The stability margins of both devices are also compared through the SISO model. Electromagnetic transient simulation results in MATLAB/Simulink and experiments validate the effectiveness of the proposed models and analyses.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"573-587"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction Modeling and Stability Analysis of Grid-Forming Energy Storage System Based on SISO Transfer Functions\",\"authors\":\"Kezan Zhang;Mengxuan Shi;Xia Chen;Dejun Shao;Youping Xu;Yin Chen\",\"doi\":\"10.1109/TSTE.2024.3471801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid expansion of photovoltaic (PV), grid-forming energy storage systems (GFM-ESS) have been widely employed for inertia response and voltage support to enhance the dynamic characteristics. Converters with different synchronization methods represent significant differences in dynamic behavior. The interactions between grid-forming (GFM) and grid-following (GFL) devices with multi-time scale control may lead to small-signal instability in hybrid systems. This paper investigates a grid-connected system comprising a grid-forming energy storage system and a grid-following PV system (GFL-PV). Based on single-input-single-output (SISO) transfer functions, a dynamic interaction model for the PV-ESS system is established. Combining the open-loop transfer functions of full-loop and sub-loop, the proposed model reveals how GFM-ESS modifies the dynamic characteristics of GFL-PV under weak grid conditions. Subsequently, the impact of different control loops and parameters on the small-signal stability of the system is analyzed. The stability margins of both devices are also compared through the SISO model. Electromagnetic transient simulation results in MATLAB/Simulink and experiments validate the effectiveness of the proposed models and analyses.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"16 1\",\"pages\":\"573-587\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10700987/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10700987/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interaction Modeling and Stability Analysis of Grid-Forming Energy Storage System Based on SISO Transfer Functions
With the rapid expansion of photovoltaic (PV), grid-forming energy storage systems (GFM-ESS) have been widely employed for inertia response and voltage support to enhance the dynamic characteristics. Converters with different synchronization methods represent significant differences in dynamic behavior. The interactions between grid-forming (GFM) and grid-following (GFL) devices with multi-time scale control may lead to small-signal instability in hybrid systems. This paper investigates a grid-connected system comprising a grid-forming energy storage system and a grid-following PV system (GFL-PV). Based on single-input-single-output (SISO) transfer functions, a dynamic interaction model for the PV-ESS system is established. Combining the open-loop transfer functions of full-loop and sub-loop, the proposed model reveals how GFM-ESS modifies the dynamic characteristics of GFL-PV under weak grid conditions. Subsequently, the impact of different control loops and parameters on the small-signal stability of the system is analyzed. The stability margins of both devices are also compared through the SISO model. Electromagnetic transient simulation results in MATLAB/Simulink and experiments validate the effectiveness of the proposed models and analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信