MD-LAIs软件:计算全序列和氨基酸水平的“嵌入”多肽和蛋白质

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Ernesto Contreras-Torres*,  and , Yovani Marrero-Ponce*, 
{"title":"MD-LAIs软件:计算全序列和氨基酸水平的“嵌入”多肽和蛋白质","authors":"Ernesto Contreras-Torres*,&nbsp; and ,&nbsp;Yovani Marrero-Ponce*,&nbsp;","doi":"10.1021/acs.jcim.3c0118910.1021/acs.jcim.3c01189","DOIUrl":null,"url":null,"abstract":"<p >Several computational tools have been developed to calculate sequence-based molecular descriptors (MDs) for peptides and proteins. However, these tools have certain limitations: 1) They generally lack capabilities for curating input data. 2) Their outputs often exhibit significant overlap. 3) There is limited availability of MDs at the amino acid (<i>aa</i>) level. 4) They lack flexibility in computing specific MDs. To address these issues, we developed <b>MD-LAIs</b> (<b>M</b>olecular <b>D</b>escriptors from <b>L</b>ocal <b>A</b>mino acid <b>I</b>nvariant<b>s</b>), Java-based software designed to compute both whole-sequence and <i>aa</i>-level MDs for peptides and proteins. These MDs are generated by applying aggregation operators (<b>AOs</b>) to macromolecular vectors containing the chemical-physical and structural properties of <i>aas</i>. The set of <b>AOs</b> includes both nonclassical (e.g., Minkowski norms) and classical <b>AOs</b> (e.g., Radial Distribution Function). Classical <b>AOs</b> capture neighborhood structural information at different <i>k</i> levels, while nonclassical <b>AOs</b> are applied using a sliding window to generalize the <i>aa</i>-level output. A weighting system based on fuzzy membership functions is also included to account for the contributions of individual <i>aas</i>. <b>MD-LAIs</b> features: 1) a module for data curation tasks, 2) a feature selection module, 3) projects of highly relevant MDs, and 4) low-dimensional lists of informative global and <i>aa</i>-level MDs. Overall, we expect that <b>MD-LAIs</b> will be a valuable tool for encoding protein or peptide sequences. The software is freely available as a stand-alone system on GitHub (https://github.com/Grupo-Medicina-Molecular-y-Traslacional/MD_LAIS).</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 23","pages":"8665–8672 8665–8672"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MD-LAIs Software: Computing Whole-Sequence and Amino Acid-Level “Embeddings” for Peptides and Proteins\",\"authors\":\"Ernesto Contreras-Torres*,&nbsp; and ,&nbsp;Yovani Marrero-Ponce*,&nbsp;\",\"doi\":\"10.1021/acs.jcim.3c0118910.1021/acs.jcim.3c01189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Several computational tools have been developed to calculate sequence-based molecular descriptors (MDs) for peptides and proteins. However, these tools have certain limitations: 1) They generally lack capabilities for curating input data. 2) Their outputs often exhibit significant overlap. 3) There is limited availability of MDs at the amino acid (<i>aa</i>) level. 4) They lack flexibility in computing specific MDs. To address these issues, we developed <b>MD-LAIs</b> (<b>M</b>olecular <b>D</b>escriptors from <b>L</b>ocal <b>A</b>mino acid <b>I</b>nvariant<b>s</b>), Java-based software designed to compute both whole-sequence and <i>aa</i>-level MDs for peptides and proteins. These MDs are generated by applying aggregation operators (<b>AOs</b>) to macromolecular vectors containing the chemical-physical and structural properties of <i>aas</i>. The set of <b>AOs</b> includes both nonclassical (e.g., Minkowski norms) and classical <b>AOs</b> (e.g., Radial Distribution Function). Classical <b>AOs</b> capture neighborhood structural information at different <i>k</i> levels, while nonclassical <b>AOs</b> are applied using a sliding window to generalize the <i>aa</i>-level output. A weighting system based on fuzzy membership functions is also included to account for the contributions of individual <i>aas</i>. <b>MD-LAIs</b> features: 1) a module for data curation tasks, 2) a feature selection module, 3) projects of highly relevant MDs, and 4) low-dimensional lists of informative global and <i>aa</i>-level MDs. Overall, we expect that <b>MD-LAIs</b> will be a valuable tool for encoding protein or peptide sequences. The software is freely available as a stand-alone system on GitHub (https://github.com/Grupo-Medicina-Molecular-y-Traslacional/MD_LAIS).</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"64 23\",\"pages\":\"8665–8672 8665–8672\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.3c01189\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.3c01189","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

一些计算工具已经开发计算基于序列的分子描述符(MDs)的肽和蛋白质。然而,这些工具有一定的局限性:1)它们通常缺乏管理输入数据的能力。2)它们的产出经常表现出明显的重叠。3)氨基酸水平上MDs的可用性有限。4)它们在计算特定MDs方面缺乏灵活性。为了解决这些问题,我们开发了MD-LAIs(来自局部氨基酸不变量的分子描述符),这是一种基于java的软件,旨在计算肽和蛋白质的全序列和aa级MDs。这些MDs是通过将聚集算子(AOs)应用于含有aas的化学物理和结构性质的大分子载体而产生的。aoos集合包括非经典(如Minkowski范数)和经典aoos(如径向分布函数)。经典AOs捕获不同k级的邻域结构信息,而非经典AOs使用滑动窗口来推广aa级输出。一个基于模糊隶属函数的加权系统也被纳入考虑个人的贡献。MD-LAIs的特点:1)数据管理任务模块,2)特征选择模块,3)高度相关MDs的项目,4)信息丰富的全局和aa级MDs的低维列表。总之,我们期望MD-LAIs将成为编码蛋白质或肽序列的有价值的工具。该软件可以作为独立系统在GitHub (https://github.com/Grupo-Medicina-Molecular-y-Traslacional/MD_LAIS)上免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MD-LAIs Software: Computing Whole-Sequence and Amino Acid-Level “Embeddings” for Peptides and Proteins

MD-LAIs Software: Computing Whole-Sequence and Amino Acid-Level “Embeddings” for Peptides and Proteins

Several computational tools have been developed to calculate sequence-based molecular descriptors (MDs) for peptides and proteins. However, these tools have certain limitations: 1) They generally lack capabilities for curating input data. 2) Their outputs often exhibit significant overlap. 3) There is limited availability of MDs at the amino acid (aa) level. 4) They lack flexibility in computing specific MDs. To address these issues, we developed MD-LAIs (Molecular Descriptors from Local Amino acid Invariants), Java-based software designed to compute both whole-sequence and aa-level MDs for peptides and proteins. These MDs are generated by applying aggregation operators (AOs) to macromolecular vectors containing the chemical-physical and structural properties of aas. The set of AOs includes both nonclassical (e.g., Minkowski norms) and classical AOs (e.g., Radial Distribution Function). Classical AOs capture neighborhood structural information at different k levels, while nonclassical AOs are applied using a sliding window to generalize the aa-level output. A weighting system based on fuzzy membership functions is also included to account for the contributions of individual aas. MD-LAIs features: 1) a module for data curation tasks, 2) a feature selection module, 3) projects of highly relevant MDs, and 4) low-dimensional lists of informative global and aa-level MDs. Overall, we expect that MD-LAIs will be a valuable tool for encoding protein or peptide sequences. The software is freely available as a stand-alone system on GitHub (https://github.com/Grupo-Medicina-Molecular-y-Traslacional/MD_LAIS).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信