Jing Xu, Yuting Hu, Mochun Zhang, Jialong Cao, Mengran Wang*, Bo Hong and Yanqing Lai,
{"title":"High-Performance Copolymerized Polycarbonate-Based Solid Electrolytes for Lithium Metal Batteries","authors":"Jing Xu, Yuting Hu, Mochun Zhang, Jialong Cao, Mengran Wang*, Bo Hong and Yanqing Lai, ","doi":"10.1021/acsaem.4c0256410.1021/acsaem.4c02564","DOIUrl":null,"url":null,"abstract":"<p >Polycarbonate-based solid electrolytes exhibit a high dielectric constant and remarkable oxidation resistance; nervertheless, their development is constrained by low room-temperature ionic conductivity and poor electrode compatibility. To overcome these challenges, a solid polymer electrolyte (PVT) was designed containing carbonate and fluorinated side chain structures through an in situ copolymerization strategy. This structure not only enhances lithium salt dissociation and ion migration but also forms a stable LiF interface on the lithium metal anode. The PVT electrolyte demonstratesa high ionic conductivity of 1.71 × 10<sup>–4</sup> S cm<sup>–1</sup> at 30 °C, surpassing that of PVE electrolyte (without F-containing chain segments, 1.23 × 10<sup>–4</sup> S cm<sup>–1</sup>). The Li|PVT|Li cell can cycle for more than 1200 h at 0.1 mA cm<sup>–2</sup>-0.1 mAh cm<sup>–2</sup>, while the Li|PVE|Li cell operates for only 1000 h. Moreover, the capacity retention rate of Li|PVT|LFP cells remains above 80% after 200 cycles at 25 °C and 0.1C.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 23","pages":"10777–10783 10777–10783"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02564","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
聚碳酸酯基固体电解质具有较高的介电常数和显著的抗氧化性;然而,室温离子电导率低和电极兼容性差制约了其发展。为了克服这些挑战,我们通过原位共聚策略设计出了一种含有碳酸盐和氟化侧链结构的固体聚合物电解质(PVT)。这种结构不仅能增强锂盐解离和离子迁移,还能在锂金属阳极上形成稳定的锂氟界面。PVT 电解质在 30 °C 时的离子电导率高达 1.71 × 10-4 S cm-1,超过了 PVE 电解质(不含 F 链段,1.23 × 10-4 S cm-1)。在 0.1 mA cm-2-0.1 mAh cm-2 下,Li|PVT|Li 电池可循环使用 1200 小时以上,而 Li|PVE|Li 电池只能使用 1000 小时。此外,在 25 °C 和 0.1C 下循环使用 200 次后,Li|PVT|LFP 电池的容量保持率仍在 80% 以上。
High-Performance Copolymerized Polycarbonate-Based Solid Electrolytes for Lithium Metal Batteries
Polycarbonate-based solid electrolytes exhibit a high dielectric constant and remarkable oxidation resistance; nervertheless, their development is constrained by low room-temperature ionic conductivity and poor electrode compatibility. To overcome these challenges, a solid polymer electrolyte (PVT) was designed containing carbonate and fluorinated side chain structures through an in situ copolymerization strategy. This structure not only enhances lithium salt dissociation and ion migration but also forms a stable LiF interface on the lithium metal anode. The PVT electrolyte demonstratesa high ionic conductivity of 1.71 × 10–4 S cm–1 at 30 °C, surpassing that of PVE electrolyte (without F-containing chain segments, 1.23 × 10–4 S cm–1). The Li|PVT|Li cell can cycle for more than 1200 h at 0.1 mA cm–2-0.1 mAh cm–2, while the Li|PVE|Li cell operates for only 1000 h. Moreover, the capacity retention rate of Li|PVT|LFP cells remains above 80% after 200 cycles at 25 °C and 0.1C.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.