立体化学对局部蛋白质构象计算方法的影响

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Wagner da Rocha, Leo Liberti, Antonio Mucherino and Thérèse E. Malliavin*, 
{"title":"立体化学对局部蛋白质构象计算方法的影响","authors":"Wagner da Rocha,&nbsp;Leo Liberti,&nbsp;Antonio Mucherino and Thérèse E. Malliavin*,&nbsp;","doi":"10.1021/acs.jcim.4c0123210.1021/acs.jcim.4c01232","DOIUrl":null,"url":null,"abstract":"<p >Protein structure prediction is generally based on the use of local conformational information coupled with long-range distance restraints. Such restraints can be derived from the knowledge of a template structure or the analysis of protein sequence alignment in the framework of models arising from the physics of disordered systems. The accuracy of approaches based on sequence alignment, however, is limited in the case where the number of aligned sequences is small. Here, we derive protein conformations using only local conformations knowledge by means of the interval Branch-and-Prune algorithm. The computation efficiency is directly related to the knowledge of stereochemistry (bond angle and ω values) along the protein sequence and, in particular, to the variations of the torsion angle ω. The impact of stereochemistry variations is particularly strong in the case of protein topologies defined from numerous long-range restraints, as in the case of protein of β secondary structures. The systematic enumeration of the conformations improves the efficiency of the calculations. The analysis of DNA codons permits to connect the variations of torsion angle ω to the positions of rare DNA codons.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 23","pages":"8999–9008 8999–9008"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Stereochemistry in a Local Approach for Calculating Protein Conformations\",\"authors\":\"Wagner da Rocha,&nbsp;Leo Liberti,&nbsp;Antonio Mucherino and Thérèse E. Malliavin*,&nbsp;\",\"doi\":\"10.1021/acs.jcim.4c0123210.1021/acs.jcim.4c01232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Protein structure prediction is generally based on the use of local conformational information coupled with long-range distance restraints. Such restraints can be derived from the knowledge of a template structure or the analysis of protein sequence alignment in the framework of models arising from the physics of disordered systems. The accuracy of approaches based on sequence alignment, however, is limited in the case where the number of aligned sequences is small. Here, we derive protein conformations using only local conformations knowledge by means of the interval Branch-and-Prune algorithm. The computation efficiency is directly related to the knowledge of stereochemistry (bond angle and ω values) along the protein sequence and, in particular, to the variations of the torsion angle ω. The impact of stereochemistry variations is particularly strong in the case of protein topologies defined from numerous long-range restraints, as in the case of protein of β secondary structures. The systematic enumeration of the conformations improves the efficiency of the calculations. The analysis of DNA codons permits to connect the variations of torsion angle ω to the positions of rare DNA codons.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"64 23\",\"pages\":\"8999–9008 8999–9008\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01232\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01232","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质结构预测通常基于局部构象信息与远程距离限制的结合。这种限制可以来自模板结构的知识或在无序系统的物理模型框架中对蛋白质序列比对的分析。然而,基于序列比对的方法的准确性在比对序列数量较少的情况下受到限制。在这里,我们只使用局部构象知识,通过区间分支-剪枝算法得到蛋白质构象。计算效率与蛋白质序列的立体化学知识(键角和ω值)直接相关,特别是与扭转角ω的变化直接相关。立体化学变化的影响在由许多远程约束定义的蛋白质拓扑中尤其强烈,如β二级结构的蛋白质。系统地列举构象提高了计算效率。DNA密码子的分析可以将扭转角ω的变化与稀有DNA密码子的位置联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of Stereochemistry in a Local Approach for Calculating Protein Conformations

Influence of Stereochemistry in a Local Approach for Calculating Protein Conformations

Protein structure prediction is generally based on the use of local conformational information coupled with long-range distance restraints. Such restraints can be derived from the knowledge of a template structure or the analysis of protein sequence alignment in the framework of models arising from the physics of disordered systems. The accuracy of approaches based on sequence alignment, however, is limited in the case where the number of aligned sequences is small. Here, we derive protein conformations using only local conformations knowledge by means of the interval Branch-and-Prune algorithm. The computation efficiency is directly related to the knowledge of stereochemistry (bond angle and ω values) along the protein sequence and, in particular, to the variations of the torsion angle ω. The impact of stereochemistry variations is particularly strong in the case of protein topologies defined from numerous long-range restraints, as in the case of protein of β secondary structures. The systematic enumeration of the conformations improves the efficiency of the calculations. The analysis of DNA codons permits to connect the variations of torsion angle ω to the positions of rare DNA codons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信