从密度泛函理论看非晶硅和二氧化硅的非线性弹性

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Umesh C. Roy,  and , Angelo Bongiorno*, 
{"title":"从密度泛函理论看非晶硅和二氧化硅的非线性弹性","authors":"Umesh C. Roy,&nbsp; and ,&nbsp;Angelo Bongiorno*,&nbsp;","doi":"10.1021/acs.jpcc.4c0655010.1021/acs.jpcc.4c06550","DOIUrl":null,"url":null,"abstract":"<p >Density functional theory calculations and a finite deformation method are used to calculate second- and, most notably, third-order elastic constants of amorphous silicon and amorphous silicon dioxide, as represented by model structures generated via melt-quench force-field molecular dynamics simulations. Linear and nonlinear elastic constants are used to deduce macroscopic elastic moduli, such as the bulk and shear moduli, their pressure derivatives, and the elastic Grüneisen parameter. Our calculations show that the elastic properties of amorphous silicon reach the isotropic elastic limit within the nanometer length scale, attaining characteristics, both linear and nonlinear, comparable to those of crystalline silicon. In contrast, the nonlinear elastic properties of silica retain an anisotropic character over the nanometer length scales, yielding nonetheless the expected pressure-induced softening of the elastic moduli. This atypical elastic behavior is correlated to the occurrence of long-wavelength acoustic modes with negative Grüneisen parameters.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"128 49","pages":"21220–21227 21220–21227"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.4c06550","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Elasticity of Amorphous Silicon and Silica from Density Functional Theory\",\"authors\":\"Umesh C. Roy,&nbsp; and ,&nbsp;Angelo Bongiorno*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c0655010.1021/acs.jpcc.4c06550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Density functional theory calculations and a finite deformation method are used to calculate second- and, most notably, third-order elastic constants of amorphous silicon and amorphous silicon dioxide, as represented by model structures generated via melt-quench force-field molecular dynamics simulations. Linear and nonlinear elastic constants are used to deduce macroscopic elastic moduli, such as the bulk and shear moduli, their pressure derivatives, and the elastic Grüneisen parameter. Our calculations show that the elastic properties of amorphous silicon reach the isotropic elastic limit within the nanometer length scale, attaining characteristics, both linear and nonlinear, comparable to those of crystalline silicon. In contrast, the nonlinear elastic properties of silica retain an anisotropic character over the nanometer length scales, yielding nonetheless the expected pressure-induced softening of the elastic moduli. This atypical elastic behavior is correlated to the occurrence of long-wavelength acoustic modes with negative Grüneisen parameters.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"128 49\",\"pages\":\"21220–21227 21220–21227\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.4c06550\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c06550\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c06550","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用密度泛函理论计算和有限变形方法计算了非晶硅和非晶硅二氧化硅的二阶弹性常数,尤其是三阶弹性常数,这些弹性常数由熔融淬火力场分子动力学模拟生成的模型结构表示。线性和非线性弹性常数用于推导宏观弹性模量,如体积弹性模量和剪切模量、其压力导数以及弹性格吕尼森参数。计算结果表明,非晶硅的弹性特性在纳米长度范围内达到了各向同性的弹性极限,具有与晶体硅相当的线性和非线性特性。与此相反,硅的非线性弹性特性在纳米长度尺度上保持了各向异性的特征,尽管如此,仍产生了预期的压力引起的弹性模量软化。这种非典型弹性行为与具有负格鲁奈森参数的长波声学模式的出现有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Elasticity of Amorphous Silicon and Silica from Density Functional Theory

Density functional theory calculations and a finite deformation method are used to calculate second- and, most notably, third-order elastic constants of amorphous silicon and amorphous silicon dioxide, as represented by model structures generated via melt-quench force-field molecular dynamics simulations. Linear and nonlinear elastic constants are used to deduce macroscopic elastic moduli, such as the bulk and shear moduli, their pressure derivatives, and the elastic Grüneisen parameter. Our calculations show that the elastic properties of amorphous silicon reach the isotropic elastic limit within the nanometer length scale, attaining characteristics, both linear and nonlinear, comparable to those of crystalline silicon. In contrast, the nonlinear elastic properties of silica retain an anisotropic character over the nanometer length scales, yielding nonetheless the expected pressure-induced softening of the elastic moduli. This atypical elastic behavior is correlated to the occurrence of long-wavelength acoustic modes with negative Grüneisen parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信