MoO3表面CsHMoO4和H2MoO4配合物的从头算研究

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Mariam Saab, Sidi M. O. Souvi*, Jean Denis, François Virot and Monica Calatayud*, 
{"title":"MoO3表面CsHMoO4和H2MoO4配合物的从头算研究","authors":"Mariam Saab,&nbsp;Sidi M. O. Souvi*,&nbsp;Jean Denis,&nbsp;François Virot and Monica Calatayud*,&nbsp;","doi":"10.1021/acs.jpcc.4c0702210.1021/acs.jpcc.4c07022","DOIUrl":null,"url":null,"abstract":"<p >Solid surfaces play a crucial role in many processes, yet their impact on nuclear safety is not well understood. This study investigates how solid surfaces affect the behavior of radioactive gaseous species, focusing on the interaction of fission product complexes formed under nuclear accident conditions. Specifically, we examine the condensation and decomposition of Cs–Mo complexes, CsHMoO<sub>4</sub> and H<sub>2</sub>MoO<sub>4</sub>, when interacting with MoO<sub>3</sub> deposits in a reactor cooling system, considering two surface terminations: O and Mo. Using density functional theory (DFT), we calculate the Gibbs free energy for these reactions on MoO<sub>3</sub> surfaces at temperatures ranging from 300 to 1800 K. CsHMoO<sub>4</sub> condenses below 850 K and dissociates between 300 and 650 K on O-MoO<sub>3</sub> and 650–1250 K on Mo-MoO<sub>3</sub>, forming Cs<sub>2</sub>MoO<sub>4</sub> and MoO<sub>3</sub>, along with steam release. H<sub>2</sub>MoO<sub>4</sub> condenses below 500 K and decomposes between 600 and 800 K, but only on Mo-terminated surfaces. These findings improve the accuracy of nuclear simulations, helping to predict species composition and transport within the reactor cooling system during accidents.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"128 50","pages":"21447–21455 21447–21455"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab Initio Insight into CsHMoO4 and H2MoO4 Complexes on MoO3 Surfaces\",\"authors\":\"Mariam Saab,&nbsp;Sidi M. O. Souvi*,&nbsp;Jean Denis,&nbsp;François Virot and Monica Calatayud*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c0702210.1021/acs.jpcc.4c07022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Solid surfaces play a crucial role in many processes, yet their impact on nuclear safety is not well understood. This study investigates how solid surfaces affect the behavior of radioactive gaseous species, focusing on the interaction of fission product complexes formed under nuclear accident conditions. Specifically, we examine the condensation and decomposition of Cs–Mo complexes, CsHMoO<sub>4</sub> and H<sub>2</sub>MoO<sub>4</sub>, when interacting with MoO<sub>3</sub> deposits in a reactor cooling system, considering two surface terminations: O and Mo. Using density functional theory (DFT), we calculate the Gibbs free energy for these reactions on MoO<sub>3</sub> surfaces at temperatures ranging from 300 to 1800 K. CsHMoO<sub>4</sub> condenses below 850 K and dissociates between 300 and 650 K on O-MoO<sub>3</sub> and 650–1250 K on Mo-MoO<sub>3</sub>, forming Cs<sub>2</sub>MoO<sub>4</sub> and MoO<sub>3</sub>, along with steam release. H<sub>2</sub>MoO<sub>4</sub> condenses below 500 K and decomposes between 600 and 800 K, but only on Mo-terminated surfaces. These findings improve the accuracy of nuclear simulations, helping to predict species composition and transport within the reactor cooling system during accidents.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"128 50\",\"pages\":\"21447–21455 21447–21455\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c07022\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c07022","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

固体表面在许多过程中都起着至关重要的作用,但人们对它们对核安全的影响还不甚了解。本研究以核事故条件下形成的裂变产物复合物的相互作用为重点,研究固体表面如何影响放射性气态物种的行为。具体来说,我们研究了反应堆冷却系统中铯-钼复合物(CsHMoO4 和 H2MoO4)与 MoO3 沉积物相互作用时的凝结和分解情况,并考虑了两种表面终端:O 和 Mo。我们利用密度泛函理论(DFT)计算了这些反应在温度为 300 至 1800 K 的 MoO3 表面上的吉布斯自由能。CsHMoO4 在低于 850 K 时凝结,在 O-MoO3 上于 300 至 650 K 之间解离,在 Mo-MoO3 上于 650 至 1250 K 之间解离,形成 Cs2MoO4 和 MoO3,同时释放出蒸汽。H2MoO4 在开氏 500 度以下凝结,在开氏 600 至 800 度之间分解,但仅限于钼封端的表面。这些发现提高了核模拟的准确性,有助于预测事故期间反应堆冷却系统内的物种组成和迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ab Initio Insight into CsHMoO4 and H2MoO4 Complexes on MoO3 Surfaces

Ab Initio Insight into CsHMoO4 and H2MoO4 Complexes on MoO3 Surfaces

Solid surfaces play a crucial role in many processes, yet their impact on nuclear safety is not well understood. This study investigates how solid surfaces affect the behavior of radioactive gaseous species, focusing on the interaction of fission product complexes formed under nuclear accident conditions. Specifically, we examine the condensation and decomposition of Cs–Mo complexes, CsHMoO4 and H2MoO4, when interacting with MoO3 deposits in a reactor cooling system, considering two surface terminations: O and Mo. Using density functional theory (DFT), we calculate the Gibbs free energy for these reactions on MoO3 surfaces at temperatures ranging from 300 to 1800 K. CsHMoO4 condenses below 850 K and dissociates between 300 and 650 K on O-MoO3 and 650–1250 K on Mo-MoO3, forming Cs2MoO4 and MoO3, along with steam release. H2MoO4 condenses below 500 K and decomposes between 600 and 800 K, but only on Mo-terminated surfaces. These findings improve the accuracy of nuclear simulations, helping to predict species composition and transport within the reactor cooling system during accidents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信