可观测和马尔可夫切换分数驱动模型的区间波动动态

IF 7.4 2区 经济学 Q1 BUSINESS, FINANCE
Szabolcs Blazsek, Dejun Kong, Samantha R. Shadoff
{"title":"可观测和马尔可夫切换分数驱动模型的区间波动动态","authors":"Szabolcs Blazsek, Dejun Kong, Samantha R. Shadoff","doi":"10.1016/j.frl.2024.106631","DOIUrl":null,"url":null,"abstract":"We study the novel Markov-switching (MS) Beta-<mml:math altimg=\"si414.svg\" display=\"inline\"><mml:mi>t</mml:mi></mml:math>-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) model, using within-regime volatility dynamics, similar to the recent observable-switching (OS) Beta-<mml:math altimg=\"si414.svg\" display=\"inline\"><mml:mi>t</mml:mi></mml:math>-EGARCH model. We report in-sample results on the Standard &amp; Poor’s 500 (S&amp;P 500) and a random sample of 50 firms from the S&amp;P 500 from March 1986 to July 2024. We compare the out-of-sample forecasting performances of OS-Beta-<mml:math altimg=\"si414.svg\" display=\"inline\"><mml:mi>t</mml:mi></mml:math>-EGARCH and MS-Beta-<mml:math altimg=\"si414.svg\" display=\"inline\"><mml:mi>t</mml:mi></mml:math>-EGARCH from May 2005 to July 2024 and confirm that OS-Beta-<mml:math altimg=\"si414.svg\" display=\"inline\"><mml:mi>t</mml:mi></mml:math>-EGARCH is superior to MS-Beta-<mml:math altimg=\"si414.svg\" display=\"inline\"><mml:mi>t</mml:mi></mml:math>-EGARCH.","PeriodicalId":12167,"journal":{"name":"Finance Research Letters","volume":"81 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Within-regime volatility dynamics for observable- and Markov-switching score-driven models\",\"authors\":\"Szabolcs Blazsek, Dejun Kong, Samantha R. Shadoff\",\"doi\":\"10.1016/j.frl.2024.106631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the novel Markov-switching (MS) Beta-<mml:math altimg=\\\"si414.svg\\\" display=\\\"inline\\\"><mml:mi>t</mml:mi></mml:math>-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) model, using within-regime volatility dynamics, similar to the recent observable-switching (OS) Beta-<mml:math altimg=\\\"si414.svg\\\" display=\\\"inline\\\"><mml:mi>t</mml:mi></mml:math>-EGARCH model. We report in-sample results on the Standard &amp; Poor’s 500 (S&amp;P 500) and a random sample of 50 firms from the S&amp;P 500 from March 1986 to July 2024. We compare the out-of-sample forecasting performances of OS-Beta-<mml:math altimg=\\\"si414.svg\\\" display=\\\"inline\\\"><mml:mi>t</mml:mi></mml:math>-EGARCH and MS-Beta-<mml:math altimg=\\\"si414.svg\\\" display=\\\"inline\\\"><mml:mi>t</mml:mi></mml:math>-EGARCH from May 2005 to July 2024 and confirm that OS-Beta-<mml:math altimg=\\\"si414.svg\\\" display=\\\"inline\\\"><mml:mi>t</mml:mi></mml:math>-EGARCH is superior to MS-Beta-<mml:math altimg=\\\"si414.svg\\\" display=\\\"inline\\\"><mml:mi>t</mml:mi></mml:math>-EGARCH.\",\"PeriodicalId\":12167,\"journal\":{\"name\":\"Finance Research Letters\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finance Research Letters\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1016/j.frl.2024.106631\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance Research Letters","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1016/j.frl.2024.106631","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了新的马尔可夫转换(MS)Beta-t-EGARCH(指数广义自回归条件异方差)模型,该模型使用了与最近的可观测转换(OS)Beta-t-EGARCH 模型类似的区间内波动动态。我们报告了 1986 年 3 月至 2024 年 7 月期间标准普尔 500 指数(S&P 500)和从 S&P 500 指数中随机抽取的 50 家公司的样本内结果。我们比较了 OS-Beta-t-EGARCH 和 MS-Beta-t-EGARCH 在 2005 年 5 月至 2024 年 7 月期间的样本外预测性能,结果证实 OS-Beta-t-EGARCH 优于 MS-Beta-t-EGARCH。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Within-regime volatility dynamics for observable- and Markov-switching score-driven models
We study the novel Markov-switching (MS) Beta-t-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) model, using within-regime volatility dynamics, similar to the recent observable-switching (OS) Beta-t-EGARCH model. We report in-sample results on the Standard & Poor’s 500 (S&P 500) and a random sample of 50 firms from the S&P 500 from March 1986 to July 2024. We compare the out-of-sample forecasting performances of OS-Beta-t-EGARCH and MS-Beta-t-EGARCH from May 2005 to July 2024 and confirm that OS-Beta-t-EGARCH is superior to MS-Beta-t-EGARCH.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Finance Research Letters
Finance Research Letters BUSINESS, FINANCE-
CiteScore
11.10
自引率
14.40%
发文量
863
期刊介绍: Finance Research Letters welcomes submissions across all areas of finance, aiming for rapid publication of significant new findings. The journal particularly encourages papers that provide insight into the replicability of established results, examine the cross-national applicability of previous findings, challenge existing methodologies, or demonstrate methodological contingencies. Papers are invited in the following areas: Actuarial studies Alternative investments Asset Pricing Bankruptcy and liquidation Banks and other Depository Institutions Behavioral and experimental finance Bibliometric and Scientometric studies of finance Capital budgeting and corporate investment Capital markets and accounting Capital structure and payout policy Commodities Contagion, crises and interdependence Corporate governance Credit and fixed income markets and instruments Derivatives Emerging markets Energy Finance and Energy Markets Financial Econometrics Financial History Financial intermediation and money markets Financial markets and marketplaces Financial Mathematics and Econophysics Financial Regulation and Law Forecasting Frontier market studies International Finance Market efficiency, event studies Mergers, acquisitions and the market for corporate control Micro Finance Institutions Microstructure Non-bank Financial Institutions Personal Finance Portfolio choice and investing Real estate finance and investing Risk SME, Family and Entrepreneurial Finance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信