Yue Xia, Aaron D. Charlack, Rui Guo, Nicholas W. Wade, Yiming Wang
{"title":"通过2-烯-4-炔酸酯的氢氟化获得氟化二烯","authors":"Yue Xia, Aaron D. Charlack, Rui Guo, Nicholas W. Wade, Yiming Wang","doi":"10.1039/d4qo02049a","DOIUrl":null,"url":null,"abstract":"The hydrofluorination of enynes has been developed for the synthesis of fluorinated dienes. Using a pyridinium tetrafluoroborate salt that is easily prepared on large scale, this approach enabled the direct conversion of enynes to fluorinated diene targets through a vinyl cation mediated process. This approach was applied to a range of aryl-substituted enyne esters to deliver the (Z)-configured products with high levels of stereo- and regioselectivity. Mechanistic studies were conducted to provide insights into the stereochemical outcome and reaction efficiency under different reaction conditions.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"21 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Access to Fluorinated Dienes through Hydrofluorination of 2-En-4-ynoates\",\"authors\":\"Yue Xia, Aaron D. Charlack, Rui Guo, Nicholas W. Wade, Yiming Wang\",\"doi\":\"10.1039/d4qo02049a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hydrofluorination of enynes has been developed for the synthesis of fluorinated dienes. Using a pyridinium tetrafluoroborate salt that is easily prepared on large scale, this approach enabled the direct conversion of enynes to fluorinated diene targets through a vinyl cation mediated process. This approach was applied to a range of aryl-substituted enyne esters to deliver the (Z)-configured products with high levels of stereo- and regioselectivity. Mechanistic studies were conducted to provide insights into the stereochemical outcome and reaction efficiency under different reaction conditions.\",\"PeriodicalId\":97,\"journal\":{\"name\":\"Organic Chemistry Frontiers\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qo02049a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qo02049a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Access to Fluorinated Dienes through Hydrofluorination of 2-En-4-ynoates
The hydrofluorination of enynes has been developed for the synthesis of fluorinated dienes. Using a pyridinium tetrafluoroborate salt that is easily prepared on large scale, this approach enabled the direct conversion of enynes to fluorinated diene targets through a vinyl cation mediated process. This approach was applied to a range of aryl-substituted enyne esters to deliver the (Z)-configured products with high levels of stereo- and regioselectivity. Mechanistic studies were conducted to provide insights into the stereochemical outcome and reaction efficiency under different reaction conditions.
期刊介绍:
Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.