水对加速碳酸化的影响:对生产可持续建筑材料的影响

Yi Jiang, Zihan Ma, Yining Gao, Peiliang Shen, Chi Sun Poon
{"title":"水对加速碳酸化的影响:对生产可持续建筑材料的影响","authors":"Yi Jiang, Zihan Ma, Yining Gao, Peiliang Shen, Chi Sun Poon","doi":"10.1016/j.cemconcomp.2024.105902","DOIUrl":null,"url":null,"abstract":"The construction industry has been facing significant challenges in reducing CO<sub>2</sub> emissions. As such, accelerated carbonation has attracted explosive attention in view of its ability to bind CO<sub>2</sub> back to construction materials while improving their performance. Water is a decisive factor in carbonation because it bridges the reaction between gaseous CO<sub>2</sub> and solid precursors, and three distinct approaches of carbonation have been developed depending on the amount of water present at carbonation. In this paper, specific roles of water in several parallel mechanisms of carbonation are revealed and then a holistic understanding on the impact of water is established by reviewing and comparing the efficiency, mineralogy and microstructure changes of cementitious materials and calcium-based solid wastes after dry, semi-wet, and wet carbonation. The differences in solid phase dissolution, calcium carbonate precipitation and re-crystallization, aluminosilicate polymerization, microstructure rebuilding, pore structure evolution, specific surface area development, etc. at different water availability are highlighted. Additionally, modified carbonation techniques based on different water content are also summarized and discussed. Overall, awareness of water’s impact on carbonation facilitates the efficient and effective production of sustainable construction materials and maximizes the reduction in CO<sub>2</sub> emission.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on the impact of water in accelerated carbonation: implications for producing sustainable construction materials\",\"authors\":\"Yi Jiang, Zihan Ma, Yining Gao, Peiliang Shen, Chi Sun Poon\",\"doi\":\"10.1016/j.cemconcomp.2024.105902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The construction industry has been facing significant challenges in reducing CO<sub>2</sub> emissions. As such, accelerated carbonation has attracted explosive attention in view of its ability to bind CO<sub>2</sub> back to construction materials while improving their performance. Water is a decisive factor in carbonation because it bridges the reaction between gaseous CO<sub>2</sub> and solid precursors, and three distinct approaches of carbonation have been developed depending on the amount of water present at carbonation. In this paper, specific roles of water in several parallel mechanisms of carbonation are revealed and then a holistic understanding on the impact of water is established by reviewing and comparing the efficiency, mineralogy and microstructure changes of cementitious materials and calcium-based solid wastes after dry, semi-wet, and wet carbonation. The differences in solid phase dissolution, calcium carbonate precipitation and re-crystallization, aluminosilicate polymerization, microstructure rebuilding, pore structure evolution, specific surface area development, etc. at different water availability are highlighted. Additionally, modified carbonation techniques based on different water content are also summarized and discussed. Overall, awareness of water’s impact on carbonation facilitates the efficient and effective production of sustainable construction materials and maximizes the reduction in CO<sub>2</sub> emission.\",\"PeriodicalId\":519419,\"journal\":{\"name\":\"Cement and Concrete Composites\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cemconcomp.2024.105902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2024.105902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建筑行业在减少二氧化碳排放方面一直面临着巨大挑战。因此,加速碳化技术因其在改善建筑材料性能的同时,还能将二氧化碳重新与建筑材料结合的能力而引起了爆炸性的关注。水是碳化过程中的一个决定性因素,因为它是气态二氧化碳和固态前体反应的桥梁,根据碳化过程中水的含量,已经开发出三种不同的碳化方法。本文揭示了水在几种平行的碳化机制中的具体作用,然后通过回顾和比较干法、半湿法和湿法碳化后水泥基材料和钙基固体废弃物的效率、矿物学和微观结构的变化,建立了对水的影响的整体认识。重点介绍了在不同水量条件下固相溶解、碳酸钙沉淀和再结晶、硅酸铝聚合、微观结构重建、孔隙结构演变、比表面积发展等方面的差异。此外,还总结和讨论了基于不同含水量的改良碳化技术。总之,了解水对碳化的影响有助于高效生产可持续建筑材料,并最大限度地减少二氧化碳排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review on the impact of water in accelerated carbonation: implications for producing sustainable construction materials
The construction industry has been facing significant challenges in reducing CO2 emissions. As such, accelerated carbonation has attracted explosive attention in view of its ability to bind CO2 back to construction materials while improving their performance. Water is a decisive factor in carbonation because it bridges the reaction between gaseous CO2 and solid precursors, and three distinct approaches of carbonation have been developed depending on the amount of water present at carbonation. In this paper, specific roles of water in several parallel mechanisms of carbonation are revealed and then a holistic understanding on the impact of water is established by reviewing and comparing the efficiency, mineralogy and microstructure changes of cementitious materials and calcium-based solid wastes after dry, semi-wet, and wet carbonation. The differences in solid phase dissolution, calcium carbonate precipitation and re-crystallization, aluminosilicate polymerization, microstructure rebuilding, pore structure evolution, specific surface area development, etc. at different water availability are highlighted. Additionally, modified carbonation techniques based on different water content are also summarized and discussed. Overall, awareness of water’s impact on carbonation facilitates the efficient and effective production of sustainable construction materials and maximizes the reduction in CO2 emission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信