基于贴片相似纯化的真实世界低剂量CT图像去噪

Zeya Song;Liqi Xue;Jun Xu;Baoping Zhang;Chao Jin;Jian Yang;Changliang Zou
{"title":"基于贴片相似纯化的真实世界低剂量CT图像去噪","authors":"Zeya Song;Liqi Xue;Jun Xu;Baoping Zhang;Chao Jin;Jian Yang;Changliang Zou","doi":"10.1109/TIP.2024.3515878","DOIUrl":null,"url":null,"abstract":"Reducing the radiation dose in CT scanning is important to alleviate the damage to the human health in clinical scenes. A promising way is to replace the normal-dose CT (NDCT) imaging by low-dose CT (LDCT) imaging with lower tube voltage and tube current. This often brings severe noise to the LDCT images, which adversely affects the diagnosis accuracy. Most of existing LDCT image denoising networks are trained either with synthetic LDCT images or real-world LDCT and NDCT image pairs with huge spatial misalignment. However, the synthetic noise is very different from the complex noise in real-world LDCT images, while the huge spatial misalignment brings inaccurate predictions of tissue structures in the denoised LDCT images. To well utilize real-world LDCT and NDCT image pairs for LDCT image denoising, in this paper, we introduce a new Patch Similarity Purification (PSP) strategy to construct high-quality training dataset for network training. Specifically, our PSP strategy first perform binarization for each pair of image patches cropped from the corresponding LDCT and NDCT image pairs. For each pair of binary masks, it then computes their similarity ratio by common mask calculation, and the patch pair can be selected as a training sample if their mask similarity ratio is higher than a threshold. By using our PSP strategy, each training set of our Rabbit and Patient datasets contain hundreds of thousands of real-world LDCT and NDCT image patch pairs with negligible misalignment. Extensive experiments demonstrate the usefulness of our PSP strategy on purifying the training data and the effectiveness of training LDCT image denoising networks on our datasets. The code and dataset are provided at <uri>https://github.com/TuTusong/PSP</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"196-208"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-World Low-Dose CT Image Denoising by Patch Similarity Purification\",\"authors\":\"Zeya Song;Liqi Xue;Jun Xu;Baoping Zhang;Chao Jin;Jian Yang;Changliang Zou\",\"doi\":\"10.1109/TIP.2024.3515878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing the radiation dose in CT scanning is important to alleviate the damage to the human health in clinical scenes. A promising way is to replace the normal-dose CT (NDCT) imaging by low-dose CT (LDCT) imaging with lower tube voltage and tube current. This often brings severe noise to the LDCT images, which adversely affects the diagnosis accuracy. Most of existing LDCT image denoising networks are trained either with synthetic LDCT images or real-world LDCT and NDCT image pairs with huge spatial misalignment. However, the synthetic noise is very different from the complex noise in real-world LDCT images, while the huge spatial misalignment brings inaccurate predictions of tissue structures in the denoised LDCT images. To well utilize real-world LDCT and NDCT image pairs for LDCT image denoising, in this paper, we introduce a new Patch Similarity Purification (PSP) strategy to construct high-quality training dataset for network training. Specifically, our PSP strategy first perform binarization for each pair of image patches cropped from the corresponding LDCT and NDCT image pairs. For each pair of binary masks, it then computes their similarity ratio by common mask calculation, and the patch pair can be selected as a training sample if their mask similarity ratio is higher than a threshold. By using our PSP strategy, each training set of our Rabbit and Patient datasets contain hundreds of thousands of real-world LDCT and NDCT image patch pairs with negligible misalignment. Extensive experiments demonstrate the usefulness of our PSP strategy on purifying the training data and the effectiveness of training LDCT image denoising networks on our datasets. The code and dataset are provided at <uri>https://github.com/TuTusong/PSP</uri>.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"196-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806528/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806528/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-World Low-Dose CT Image Denoising by Patch Similarity Purification
Reducing the radiation dose in CT scanning is important to alleviate the damage to the human health in clinical scenes. A promising way is to replace the normal-dose CT (NDCT) imaging by low-dose CT (LDCT) imaging with lower tube voltage and tube current. This often brings severe noise to the LDCT images, which adversely affects the diagnosis accuracy. Most of existing LDCT image denoising networks are trained either with synthetic LDCT images or real-world LDCT and NDCT image pairs with huge spatial misalignment. However, the synthetic noise is very different from the complex noise in real-world LDCT images, while the huge spatial misalignment brings inaccurate predictions of tissue structures in the denoised LDCT images. To well utilize real-world LDCT and NDCT image pairs for LDCT image denoising, in this paper, we introduce a new Patch Similarity Purification (PSP) strategy to construct high-quality training dataset for network training. Specifically, our PSP strategy first perform binarization for each pair of image patches cropped from the corresponding LDCT and NDCT image pairs. For each pair of binary masks, it then computes their similarity ratio by common mask calculation, and the patch pair can be selected as a training sample if their mask similarity ratio is higher than a threshold. By using our PSP strategy, each training set of our Rabbit and Patient datasets contain hundreds of thousands of real-world LDCT and NDCT image patch pairs with negligible misalignment. Extensive experiments demonstrate the usefulness of our PSP strategy on purifying the training data and the effectiveness of training LDCT image denoising networks on our datasets. The code and dataset are provided at https://github.com/TuTusong/PSP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信