星系在空洞中的形态

IF 5.8 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
M. Argudo-Fernández, C. Gómez Hernández, S. Verley, A. Zurita, S. Duarte Puertas, G. Blázquez Calero, J. Domínguez-Gómez, D. Espada, E. Florido, I. Pérez, L. Sánchez-Menguiano
{"title":"星系在空洞中的形态","authors":"M. Argudo-Fernández, C. Gómez Hernández, S. Verley, A. Zurita, S. Duarte Puertas, G. Blázquez Calero, J. Domínguez-Gómez, D. Espada, E. Florido, I. Pérez, L. Sánchez-Menguiano","doi":"10.1051/0004-6361/202450809","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> Among the largest structures in which matter is distributed in the Universe, we find cosmic voids, which are large, under-dense regions almost devoid of galaxies. The study of these structures and the galaxies that inhabit them, the void galaxies, provides key information for understanding galaxy evolution.<i>Aims.<i/> In this work we investigate the effects of the environment on the evolution of void galaxies. In particular, we study their morphology and explore its dependence on the location within the void where the galaxies reside, as well as on the properties of the void, such as its size and the galaxy number density.<i>Methods.<i/> The sample of void galaxies that we use in this study is based on the catalogue of cosmic voids and void galaxies in the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). As we are interested in studying the morphology of void galaxies, we select galaxies in the redshift range of 0.005 ≤ <i>z<i/> ≤ 0.080, and use the public galaxy morphologies of the SDSS sample together with deep learning algorithms to divide the sample into early- and late-type void galaxies. We analyse the fractions of galaxies of each morphological type as a function of the void-centric distance, the size of the voids, and the density of galaxies in each void.<i>Results.<i/> There is a higher abundance of late-type galaxies with respect to early-type galaxies within voids, which remains nearly constant from the inner to the outer part of the voids. We do not find any dependence of the fraction of early- and late-type galaxies on void size or on the number-density of galaxies in the voids.<i>Conclusions.<i/> Galaxies in voids follow the morphology–density relation, in the sense that the majority of the galaxies in voids (the most under-dense large-scale environments) are late-type galaxies. However, we find no difference between voids with lower or higher volume number-density of galaxies: the fractions of early- and late-type galaxies do not depend on the density of the voids. The physical processes responsible for the evolution from late towards earlier types (such as external environmental quenching) are not sufficiently effective in voids or are so slow (internal secular quenching) that their contributions do not appear in the morphology–density relation.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"49 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphologies of galaxies within voids\",\"authors\":\"M. Argudo-Fernández, C. Gómez Hernández, S. Verley, A. Zurita, S. Duarte Puertas, G. Blázquez Calero, J. Domínguez-Gómez, D. Espada, E. Florido, I. Pérez, L. Sánchez-Menguiano\",\"doi\":\"10.1051/0004-6361/202450809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<i>Context.<i/> Among the largest structures in which matter is distributed in the Universe, we find cosmic voids, which are large, under-dense regions almost devoid of galaxies. The study of these structures and the galaxies that inhabit them, the void galaxies, provides key information for understanding galaxy evolution.<i>Aims.<i/> In this work we investigate the effects of the environment on the evolution of void galaxies. In particular, we study their morphology and explore its dependence on the location within the void where the galaxies reside, as well as on the properties of the void, such as its size and the galaxy number density.<i>Methods.<i/> The sample of void galaxies that we use in this study is based on the catalogue of cosmic voids and void galaxies in the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). As we are interested in studying the morphology of void galaxies, we select galaxies in the redshift range of 0.005 ≤ <i>z<i/> ≤ 0.080, and use the public galaxy morphologies of the SDSS sample together with deep learning algorithms to divide the sample into early- and late-type void galaxies. We analyse the fractions of galaxies of each morphological type as a function of the void-centric distance, the size of the voids, and the density of galaxies in each void.<i>Results.<i/> There is a higher abundance of late-type galaxies with respect to early-type galaxies within voids, which remains nearly constant from the inner to the outer part of the voids. We do not find any dependence of the fraction of early- and late-type galaxies on void size or on the number-density of galaxies in the voids.<i>Conclusions.<i/> Galaxies in voids follow the morphology–density relation, in the sense that the majority of the galaxies in voids (the most under-dense large-scale environments) are late-type galaxies. However, we find no difference between voids with lower or higher volume number-density of galaxies: the fractions of early- and late-type galaxies do not depend on the density of the voids. The physical processes responsible for the evolution from late towards earlier types (such as external environmental quenching) are not sufficiently effective in voids or are so slow (internal secular quenching) that their contributions do not appear in the morphology–density relation.\",\"PeriodicalId\":8571,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202450809\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202450809","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

上下文。在宇宙中物质分布的最大结构中,我们发现了宇宙空洞,这是一种大而低密度的区域,几乎没有星系。对这些结构和居住在其中的星系,即空洞星系的研究,为理解星系演化提供了关键信息。在这项工作中,我们研究了环境对空洞星系演化的影响。特别是,我们研究了它们的形态,并探讨了它与星系所在的空间位置的关系,以及与空间的性质,如它的大小和星系数密度的关系。我们在这项研究中使用的空洞星系样本是基于斯隆数字巡天数据发布7 (SDSS-DR7)中的宇宙空洞和空洞星系目录。由于我们对研究空洞星系的形态感兴趣,我们选择了红移范围为0.005≤z≤0.080的星系,并利用SDSS样本的公开星系形态结合深度学习算法将样本分为早期和晚期空洞星系。我们分析了每一种形态类型的星系的分数作为空洞中心距离的函数,空洞的大小,以及每个空洞中星系的密度。相对于空腔内的早型星系,晚型星系的丰度更高,从空腔的内部到外部几乎保持不变。我们没有发现早期和晚期星系的比例与空洞大小或空洞中星系的数量密度有任何关系。空洞中的星系遵循形态-密度关系,在某种意义上说,大多数空洞中的星系(密度最低的大尺度环境)是晚型星系。然而,我们发现在星系的体积数密度较低或较高的空洞之间没有区别:早期和晚期星系的比例并不取决于空洞的密度。负责从晚期向早期演化的物理过程(如外部环境淬火)在孔隙中不够有效,或者非常缓慢(内部长期淬火),以至于它们的贡献没有出现在形态-密度关系中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphologies of galaxies within voids
Context. Among the largest structures in which matter is distributed in the Universe, we find cosmic voids, which are large, under-dense regions almost devoid of galaxies. The study of these structures and the galaxies that inhabit them, the void galaxies, provides key information for understanding galaxy evolution.Aims. In this work we investigate the effects of the environment on the evolution of void galaxies. In particular, we study their morphology and explore its dependence on the location within the void where the galaxies reside, as well as on the properties of the void, such as its size and the galaxy number density.Methods. The sample of void galaxies that we use in this study is based on the catalogue of cosmic voids and void galaxies in the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). As we are interested in studying the morphology of void galaxies, we select galaxies in the redshift range of 0.005 ≤ z ≤ 0.080, and use the public galaxy morphologies of the SDSS sample together with deep learning algorithms to divide the sample into early- and late-type void galaxies. We analyse the fractions of galaxies of each morphological type as a function of the void-centric distance, the size of the voids, and the density of galaxies in each void.Results. There is a higher abundance of late-type galaxies with respect to early-type galaxies within voids, which remains nearly constant from the inner to the outer part of the voids. We do not find any dependence of the fraction of early- and late-type galaxies on void size or on the number-density of galaxies in the voids.Conclusions. Galaxies in voids follow the morphology–density relation, in the sense that the majority of the galaxies in voids (the most under-dense large-scale environments) are late-type galaxies. However, we find no difference between voids with lower or higher volume number-density of galaxies: the fractions of early- and late-type galaxies do not depend on the density of the voids. The physical processes responsible for the evolution from late towards earlier types (such as external environmental quenching) are not sufficiently effective in voids or are so slow (internal secular quenching) that their contributions do not appear in the morphology–density relation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信