{"title":"港口国准备和应用","authors":"Garazi Muguruza, Florian Speelman","doi":"10.22331/q-2024-12-18-1573","DOIUrl":null,"url":null,"abstract":"We introduce Port-Based State Preparation (PBSP), a teleportation task where Alice holds a complete classical description of the target state and Bob's correction operations are restricted to only tracing out registers. We show a protocol that implements PBSP with error decreasing exponentially in the number of ports, in contrast to the polynomial trade-off for the related task of Port-Based Teleportation, and we prove that this is optimal when a maximally entangled resource state is used.<br/> As an application, we introduce approximate Universal Programmable Hybrid Processors (UPHP). Here the goal is to encode a unitary as a quantum state, and the UPHP can apply this unitary to a quantum state when knowing its classical description. We give a construction that needs strictly less memory in terms of dimension than the optimal approximate Universal Programmable Quantum Processor achieving the same error. Additionally, we provide lower bounds for the optimal trade-off between memory and error of UPHPs.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"11 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Port-Based State Preparation and Applications\",\"authors\":\"Garazi Muguruza, Florian Speelman\",\"doi\":\"10.22331/q-2024-12-18-1573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce Port-Based State Preparation (PBSP), a teleportation task where Alice holds a complete classical description of the target state and Bob's correction operations are restricted to only tracing out registers. We show a protocol that implements PBSP with error decreasing exponentially in the number of ports, in contrast to the polynomial trade-off for the related task of Port-Based Teleportation, and we prove that this is optimal when a maximally entangled resource state is used.<br/> As an application, we introduce approximate Universal Programmable Hybrid Processors (UPHP). Here the goal is to encode a unitary as a quantum state, and the UPHP can apply this unitary to a quantum state when knowing its classical description. We give a construction that needs strictly less memory in terms of dimension than the optimal approximate Universal Programmable Quantum Processor achieving the same error. Additionally, we provide lower bounds for the optimal trade-off between memory and error of UPHPs.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2024-12-18-1573\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-12-18-1573","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
We introduce Port-Based State Preparation (PBSP), a teleportation task where Alice holds a complete classical description of the target state and Bob's correction operations are restricted to only tracing out registers. We show a protocol that implements PBSP with error decreasing exponentially in the number of ports, in contrast to the polynomial trade-off for the related task of Port-Based Teleportation, and we prove that this is optimal when a maximally entangled resource state is used. As an application, we introduce approximate Universal Programmable Hybrid Processors (UPHP). Here the goal is to encode a unitary as a quantum state, and the UPHP can apply this unitary to a quantum state when knowing its classical description. We give a construction that needs strictly less memory in terms of dimension than the optimal approximate Universal Programmable Quantum Processor achieving the same error. Additionally, we provide lower bounds for the optimal trade-off between memory and error of UPHPs.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.