单分子FRET和染料循环的致氟性潜力。

Q3 Biochemistry, Genetics and Molecular Biology
QRB Discovery Pub Date : 2024-12-03 eCollection Date: 2024-01-01 DOI:10.1017/qrd.2024.11
Srijayee Ghosh, Sonja Schmid
{"title":"单分子FRET和染料循环的致氟性潜力。","authors":"Srijayee Ghosh, Sonja Schmid","doi":"10.1017/qrd.2024.11","DOIUrl":null,"url":null,"abstract":"<p><p>Single Molecule Förster Resonance Energy Transfer (smFRET) is a popular technique to directly observe biomolecular dynamics in real time, offering unique mechanistic insight into proteins, ribozymes, and so forth. However, inevitable photobleaching of the fluorophores puts a stringent limit on the total time a surface-tethered molecule can be monitored, fundamentally limiting the information gain through conventional smFRET measurements. DyeCycling addresses this problem by using reversibly - instead of covalently - coupled FRET fluorophores, through which it can break the photobleaching limit and theoretically provide unlimited observation time. In this perspective paper, we discuss the potential of various fluorogenic strategies to suppress the background fluorescence caused by unbound, freely diffusing fluorophores inherent to the DyeCycling approach. In comparison to nanophotonic background suppression using zero-mode waveguides, the fluorogenic approach would enable DyeCycling experiments on regular glass slides with fluorogenic FRET probes that are quenched in solution and only fluoresce upon target binding. We review a number of fluorogenic approaches and conclude, among other things, that short-range quenching appears promising for realising fluorogenic DyeCycling on regular glass slides. We anticipate that our discussion will be relevant for all single-molecule fluorescence techniques that use reversible fluorophore binding.</p>","PeriodicalId":34636,"journal":{"name":"QRB Discovery","volume":"5 ","pages":"e8"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649375/pdf/","citationCount":"0","resultStr":"{\"title\":\"The potential of fluorogenicity for single molecule FRET and DyeCycling.\",\"authors\":\"Srijayee Ghosh, Sonja Schmid\",\"doi\":\"10.1017/qrd.2024.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single Molecule Förster Resonance Energy Transfer (smFRET) is a popular technique to directly observe biomolecular dynamics in real time, offering unique mechanistic insight into proteins, ribozymes, and so forth. However, inevitable photobleaching of the fluorophores puts a stringent limit on the total time a surface-tethered molecule can be monitored, fundamentally limiting the information gain through conventional smFRET measurements. DyeCycling addresses this problem by using reversibly - instead of covalently - coupled FRET fluorophores, through which it can break the photobleaching limit and theoretically provide unlimited observation time. In this perspective paper, we discuss the potential of various fluorogenic strategies to suppress the background fluorescence caused by unbound, freely diffusing fluorophores inherent to the DyeCycling approach. In comparison to nanophotonic background suppression using zero-mode waveguides, the fluorogenic approach would enable DyeCycling experiments on regular glass slides with fluorogenic FRET probes that are quenched in solution and only fluoresce upon target binding. We review a number of fluorogenic approaches and conclude, among other things, that short-range quenching appears promising for realising fluorogenic DyeCycling on regular glass slides. We anticipate that our discussion will be relevant for all single-molecule fluorescence techniques that use reversible fluorophore binding.</p>\",\"PeriodicalId\":34636,\"journal\":{\"name\":\"QRB Discovery\",\"volume\":\"5 \",\"pages\":\"e8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649375/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"QRB Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/qrd.2024.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"QRB Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qrd.2024.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

单分子Förster共振能量转移(smFRET)是一种流行的技术,直接观察生物分子动力学的实时,提供独特的机制洞察蛋白质,核酶,等等。然而,不可避免的荧光团的光漂白对表面拴系分子的总时间进行了严格的限制,从根本上限制了通过传统smFRET测量获得的信息。dyecycle通过使用可逆而不是共价耦合的FRET荧光团来解决这个问题,通过它可以打破光漂白限制,理论上提供无限的观察时间。在这篇前瞻性的论文中,我们讨论了各种荧光策略的潜力,以抑制由未结合的、自由扩散的染料循环方法固有的荧光团引起的背景荧光。与使用零模波导的纳米光子背景抑制相比,荧光方法可以在常规玻片上使用荧光FRET探针进行dyrecycle实验,荧光探针在溶液中淬灭,仅在目标结合时发出荧光。我们回顾了一些荧光方法,并得出结论,除其他外,短程猝灭似乎有希望在常规玻片上实现荧光染料循环。我们预计,我们的讨论将适用于所有使用可逆荧光基团结合的单分子荧光技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The potential of fluorogenicity for single molecule FRET and DyeCycling.

Single Molecule Förster Resonance Energy Transfer (smFRET) is a popular technique to directly observe biomolecular dynamics in real time, offering unique mechanistic insight into proteins, ribozymes, and so forth. However, inevitable photobleaching of the fluorophores puts a stringent limit on the total time a surface-tethered molecule can be monitored, fundamentally limiting the information gain through conventional smFRET measurements. DyeCycling addresses this problem by using reversibly - instead of covalently - coupled FRET fluorophores, through which it can break the photobleaching limit and theoretically provide unlimited observation time. In this perspective paper, we discuss the potential of various fluorogenic strategies to suppress the background fluorescence caused by unbound, freely diffusing fluorophores inherent to the DyeCycling approach. In comparison to nanophotonic background suppression using zero-mode waveguides, the fluorogenic approach would enable DyeCycling experiments on regular glass slides with fluorogenic FRET probes that are quenched in solution and only fluoresce upon target binding. We review a number of fluorogenic approaches and conclude, among other things, that short-range quenching appears promising for realising fluorogenic DyeCycling on regular glass slides. We anticipate that our discussion will be relevant for all single-molecule fluorescence techniques that use reversible fluorophore binding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
QRB Discovery
QRB Discovery Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
3.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信