通信任意划分模型中的回归。

Yi Li, Honghao Lin, David P Woodruff
{"title":"通信任意划分模型中的回归。","authors":"Yi Li, Honghao Lin, David P Woodruff","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the randomized communication complexity of the distributed <math> <mrow><msub><mi>ℓ</mi> <mi>p</mi></msub> </mrow> </math> -regression problem in the coordinator model, for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>]</mo></mrow> </math> . In this problem, there is a coordinator and <math><mi>s</mi></math> servers. The <math><mi>i</mi></math> -th server receives <math> <mrow><msup><mi>A</mi> <mi>i</mi></msup> <mo>∈</mo> <msup><mrow><mo>{</mo> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>M</mi> <mo>}</mo></mrow> <mrow><mi>n</mi> <mo>×</mo> <mi>d</mi></mrow> </msup> </mrow> </math> and <math> <mrow><msup><mi>b</mi> <mi>i</mi></msup> <mo>∈</mo> <msup><mrow><mo>{</mo> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>M</mi> <mo>}</mo></mrow> <mi>n</mi></msup> </mrow> </math> and the coordinator would like to find a <math><mrow><mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>ε</mi> <mo>)</mo></mrow> </math> -approximate solution to <math> <mrow> <msub> <mrow><msub><mtext>min</mtext> <mrow><mi>x</mi> <mo>∈</mo> <msup><mtext>R</mtext> <mi>n</mi></msup> </mrow> </msub> <mrow><mo>‖</mo> <mrow> <mrow> <mrow><mrow><mo>(</mo> <mrow><msub><mo>∑</mo> <mi>i</mi></msub> <msup><mi>A</mi> <mi>i</mi></msup> </mrow> <mo>)</mo></mrow> <mi>x</mi> <mo>-</mo> <mrow><mo>(</mo> <mrow><munder><mo>∑</mo> <mi>i</mi></munder> <msup><mi>b</mi> <mi>i</mi></msup> </mrow> <mo>)</mo></mrow> </mrow> <mo>‖</mo></mrow> </mrow> </mrow> </mrow> <mi>p</mi></msub> </mrow> </math> . Here <math><mrow><mi>M</mi> <mo>≤</mo></mrow> </math> poly(nd) for convenience. This model, where the data is additively shared across servers, is commonly referred to as the arbitrary partition model. We obtain significantly improved bounds for this problem. For <math><mrow><mi>p</mi> <mo>=</mo> <mn>2</mn></mrow> </math> , i.e., least squares regression, we give the first optimal bound of <math> <mrow><mover><mtext>Θ</mtext> <mo>˜</mo></mover> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <mi>ϵ</mi></mrow> <mo>)</mo></mrow> </mrow> </math> ) bits. For <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo></mrow> </math> , we obtain an <math> <mrow><mover><mi>O</mi> <mo>˜</mo></mover> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>/</mo> <mi>ε</mi> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <mtext>poly</mtext> <mo>(</mo> <mi>ε</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> </mrow> </math> upper bound. Notably, for <math><mi>d</mi></math> sufficiently large, our leading order term only depends linearly on <math><mrow><mn>1</mn> <mo>/</mo> <mi>ϵ</mi></mrow> </math> rather than quadratically. We also show communication lower bounds of <math><mrow><mtext>Ω</mtext> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <msup><mi>ε</mi> <mn>2</mn></msup> </mrow> <mo>)</mo></mrow> </mrow> </math> for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo></mrow> </math> and <math><mrow><mtext>Ω</mtext> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <mi>ε</mi></mrow> <mo>)</mo></mrow> </mrow> </math> for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>]</mo></mrow> </math> . Our bounds considerably improve previous bounds due to (Woodruff et al. COLT, 2013) and (Vempala et al., SODA, 2020).</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"195 ","pages":"4902-4928"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646800/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\"><ns0:math> <ns0:mrow><ns0:msub><ns0:mi>ℓ</ns0:mi> <ns0:mi>p</ns0:mi></ns0:msub> </ns0:mrow> </ns0:math> -Regression in the Arbitrary Partition Model of Communication.\",\"authors\":\"Yi Li, Honghao Lin, David P Woodruff\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider the randomized communication complexity of the distributed <math> <mrow><msub><mi>ℓ</mi> <mi>p</mi></msub> </mrow> </math> -regression problem in the coordinator model, for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>]</mo></mrow> </math> . In this problem, there is a coordinator and <math><mi>s</mi></math> servers. The <math><mi>i</mi></math> -th server receives <math> <mrow><msup><mi>A</mi> <mi>i</mi></msup> <mo>∈</mo> <msup><mrow><mo>{</mo> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>M</mi> <mo>}</mo></mrow> <mrow><mi>n</mi> <mo>×</mo> <mi>d</mi></mrow> </msup> </mrow> </math> and <math> <mrow><msup><mi>b</mi> <mi>i</mi></msup> <mo>∈</mo> <msup><mrow><mo>{</mo> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>M</mi> <mo>}</mo></mrow> <mi>n</mi></msup> </mrow> </math> and the coordinator would like to find a <math><mrow><mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>ε</mi> <mo>)</mo></mrow> </math> -approximate solution to <math> <mrow> <msub> <mrow><msub><mtext>min</mtext> <mrow><mi>x</mi> <mo>∈</mo> <msup><mtext>R</mtext> <mi>n</mi></msup> </mrow> </msub> <mrow><mo>‖</mo> <mrow> <mrow> <mrow><mrow><mo>(</mo> <mrow><msub><mo>∑</mo> <mi>i</mi></msub> <msup><mi>A</mi> <mi>i</mi></msup> </mrow> <mo>)</mo></mrow> <mi>x</mi> <mo>-</mo> <mrow><mo>(</mo> <mrow><munder><mo>∑</mo> <mi>i</mi></munder> <msup><mi>b</mi> <mi>i</mi></msup> </mrow> <mo>)</mo></mrow> </mrow> <mo>‖</mo></mrow> </mrow> </mrow> </mrow> <mi>p</mi></msub> </mrow> </math> . Here <math><mrow><mi>M</mi> <mo>≤</mo></mrow> </math> poly(nd) for convenience. This model, where the data is additively shared across servers, is commonly referred to as the arbitrary partition model. We obtain significantly improved bounds for this problem. For <math><mrow><mi>p</mi> <mo>=</mo> <mn>2</mn></mrow> </math> , i.e., least squares regression, we give the first optimal bound of <math> <mrow><mover><mtext>Θ</mtext> <mo>˜</mo></mover> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <mi>ϵ</mi></mrow> <mo>)</mo></mrow> </mrow> </math> ) bits. For <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo></mrow> </math> , we obtain an <math> <mrow><mover><mi>O</mi> <mo>˜</mo></mover> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>/</mo> <mi>ε</mi> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <mtext>poly</mtext> <mo>(</mo> <mi>ε</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> </mrow> </math> upper bound. Notably, for <math><mi>d</mi></math> sufficiently large, our leading order term only depends linearly on <math><mrow><mn>1</mn> <mo>/</mo> <mi>ϵ</mi></mrow> </math> rather than quadratically. We also show communication lower bounds of <math><mrow><mtext>Ω</mtext> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <msup><mi>ε</mi> <mn>2</mn></msup> </mrow> <mo>)</mo></mrow> </mrow> </math> for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo></mrow> </math> and <math><mrow><mtext>Ω</mtext> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <mi>ε</mi></mrow> <mo>)</mo></mrow> </mrow> </math> for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>]</mo></mrow> </math> . Our bounds considerably improve previous bounds due to (Woodruff et al. COLT, 2013) and (Vempala et al., SODA, 2020).</p>\",\"PeriodicalId\":74504,\"journal\":{\"name\":\"Proceedings of machine learning research\",\"volume\":\"195 \",\"pages\":\"4902-4928\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646800/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of machine learning research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是协调器模型中分布式 ℓ p - 回归问题的随机通信复杂度,条件是 p∈ ( 0 , 2 ]。在这个问题中,有一个协调器和 s 个服务器。第 i 个服务器接收 A i∈ { - M , - M + 1 , ... , M } n × d 和 b i∈ { - M , - M + 1 , ... , M } n,协调者希望找到一个 ( 1 + ε ) 近似解,即 min x∈ R n ‖ ( ∑ i A i ) x - ( ∑ i b i ) ‖ p 。为方便起见,此处 M≤ poly(nd)。这种数据在不同服务器之间共享的模型通常被称为任意分区模型。我们在这个问题上得到了明显改善的边界。对于 p = 2,即最小二乘回归,我们首次给出了 Θ ˜ ( s d 2 + s d / ϵ ) 位的最优边界。对于 p∈ ( 1 , 2 ) ,我们得到 O ˜ ( s d 2 / ε + s d / poly ( ε ) ) 上限。值得注意的是,对于足够大的 d,我们的前导项仅线性地依赖于 1 / ϵ,而不是二次。我们还展示了 p∈ ( 0 , 1 ] 时的Ω ( s d 2 + s d / ε 2 ) 和 p∈ ( 1 , 2 ] 时的Ω ( s d 2 + s d / ε ) 的通信下界。我们的边界大大改进了之前的边界(Woodruff 等,COLT,2013 年)和(Vempala 等,SODA,2020 年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
p -Regression in the Arbitrary Partition Model of Communication.

We consider the randomized communication complexity of the distributed p -regression problem in the coordinator model, for p ( 0 , 2 ] . In this problem, there is a coordinator and s servers. The i -th server receives A i { - M , - M + 1 , , M } n × d and b i { - M , - M + 1 , , M } n and the coordinator would like to find a ( 1 + ε ) -approximate solution to min x R n ( i A i ) x - ( i b i ) p . Here M poly(nd) for convenience. This model, where the data is additively shared across servers, is commonly referred to as the arbitrary partition model. We obtain significantly improved bounds for this problem. For p = 2 , i.e., least squares regression, we give the first optimal bound of Θ ˜ ( s d 2 + s d / ϵ ) ) bits. For p ( 1 , 2 ) , we obtain an O ˜ ( s d 2 / ε + s d / poly ( ε ) ) upper bound. Notably, for d sufficiently large, our leading order term only depends linearly on 1 / ϵ rather than quadratically. We also show communication lower bounds of Ω ( s d 2 + s d / ε 2 ) for p ( 0 , 1 ] and Ω ( s d 2 + s d / ε ) for p ( 1 , 2 ] . Our bounds considerably improve previous bounds due to (Woodruff et al. COLT, 2013) and (Vempala et al., SODA, 2020).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信