{"title":"通信任意划分模型中的回归。","authors":"Yi Li, Honghao Lin, David P Woodruff","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the randomized communication complexity of the distributed <math> <mrow><msub><mi>ℓ</mi> <mi>p</mi></msub> </mrow> </math> -regression problem in the coordinator model, for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>]</mo></mrow> </math> . In this problem, there is a coordinator and <math><mi>s</mi></math> servers. The <math><mi>i</mi></math> -th server receives <math> <mrow><msup><mi>A</mi> <mi>i</mi></msup> <mo>∈</mo> <msup><mrow><mo>{</mo> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>M</mi> <mo>}</mo></mrow> <mrow><mi>n</mi> <mo>×</mo> <mi>d</mi></mrow> </msup> </mrow> </math> and <math> <mrow><msup><mi>b</mi> <mi>i</mi></msup> <mo>∈</mo> <msup><mrow><mo>{</mo> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>M</mi> <mo>}</mo></mrow> <mi>n</mi></msup> </mrow> </math> and the coordinator would like to find a <math><mrow><mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>ε</mi> <mo>)</mo></mrow> </math> -approximate solution to <math> <mrow> <msub> <mrow><msub><mtext>min</mtext> <mrow><mi>x</mi> <mo>∈</mo> <msup><mtext>R</mtext> <mi>n</mi></msup> </mrow> </msub> <mrow><mo>‖</mo> <mrow> <mrow> <mrow><mrow><mo>(</mo> <mrow><msub><mo>∑</mo> <mi>i</mi></msub> <msup><mi>A</mi> <mi>i</mi></msup> </mrow> <mo>)</mo></mrow> <mi>x</mi> <mo>-</mo> <mrow><mo>(</mo> <mrow><munder><mo>∑</mo> <mi>i</mi></munder> <msup><mi>b</mi> <mi>i</mi></msup> </mrow> <mo>)</mo></mrow> </mrow> <mo>‖</mo></mrow> </mrow> </mrow> </mrow> <mi>p</mi></msub> </mrow> </math> . Here <math><mrow><mi>M</mi> <mo>≤</mo></mrow> </math> poly(nd) for convenience. This model, where the data is additively shared across servers, is commonly referred to as the arbitrary partition model. We obtain significantly improved bounds for this problem. For <math><mrow><mi>p</mi> <mo>=</mo> <mn>2</mn></mrow> </math> , i.e., least squares regression, we give the first optimal bound of <math> <mrow><mover><mtext>Θ</mtext> <mo>˜</mo></mover> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <mi>ϵ</mi></mrow> <mo>)</mo></mrow> </mrow> </math> ) bits. For <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo></mrow> </math> , we obtain an <math> <mrow><mover><mi>O</mi> <mo>˜</mo></mover> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>/</mo> <mi>ε</mi> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <mtext>poly</mtext> <mo>(</mo> <mi>ε</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> </mrow> </math> upper bound. Notably, for <math><mi>d</mi></math> sufficiently large, our leading order term only depends linearly on <math><mrow><mn>1</mn> <mo>/</mo> <mi>ϵ</mi></mrow> </math> rather than quadratically. We also show communication lower bounds of <math><mrow><mtext>Ω</mtext> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <msup><mi>ε</mi> <mn>2</mn></msup> </mrow> <mo>)</mo></mrow> </mrow> </math> for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo></mrow> </math> and <math><mrow><mtext>Ω</mtext> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <mi>ε</mi></mrow> <mo>)</mo></mrow> </mrow> </math> for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>]</mo></mrow> </math> . Our bounds considerably improve previous bounds due to (Woodruff et al. COLT, 2013) and (Vempala et al., SODA, 2020).</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"195 ","pages":"4902-4928"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646800/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\"><ns0:math> <ns0:mrow><ns0:msub><ns0:mi>ℓ</ns0:mi> <ns0:mi>p</ns0:mi></ns0:msub> </ns0:mrow> </ns0:math> -Regression in the Arbitrary Partition Model of Communication.\",\"authors\":\"Yi Li, Honghao Lin, David P Woodruff\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider the randomized communication complexity of the distributed <math> <mrow><msub><mi>ℓ</mi> <mi>p</mi></msub> </mrow> </math> -regression problem in the coordinator model, for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>]</mo></mrow> </math> . In this problem, there is a coordinator and <math><mi>s</mi></math> servers. The <math><mi>i</mi></math> -th server receives <math> <mrow><msup><mi>A</mi> <mi>i</mi></msup> <mo>∈</mo> <msup><mrow><mo>{</mo> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>M</mi> <mo>}</mo></mrow> <mrow><mi>n</mi> <mo>×</mo> <mi>d</mi></mrow> </msup> </mrow> </math> and <math> <mrow><msup><mi>b</mi> <mi>i</mi></msup> <mo>∈</mo> <msup><mrow><mo>{</mo> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>M</mi> <mo>}</mo></mrow> <mi>n</mi></msup> </mrow> </math> and the coordinator would like to find a <math><mrow><mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>ε</mi> <mo>)</mo></mrow> </math> -approximate solution to <math> <mrow> <msub> <mrow><msub><mtext>min</mtext> <mrow><mi>x</mi> <mo>∈</mo> <msup><mtext>R</mtext> <mi>n</mi></msup> </mrow> </msub> <mrow><mo>‖</mo> <mrow> <mrow> <mrow><mrow><mo>(</mo> <mrow><msub><mo>∑</mo> <mi>i</mi></msub> <msup><mi>A</mi> <mi>i</mi></msup> </mrow> <mo>)</mo></mrow> <mi>x</mi> <mo>-</mo> <mrow><mo>(</mo> <mrow><munder><mo>∑</mo> <mi>i</mi></munder> <msup><mi>b</mi> <mi>i</mi></msup> </mrow> <mo>)</mo></mrow> </mrow> <mo>‖</mo></mrow> </mrow> </mrow> </mrow> <mi>p</mi></msub> </mrow> </math> . Here <math><mrow><mi>M</mi> <mo>≤</mo></mrow> </math> poly(nd) for convenience. This model, where the data is additively shared across servers, is commonly referred to as the arbitrary partition model. We obtain significantly improved bounds for this problem. For <math><mrow><mi>p</mi> <mo>=</mo> <mn>2</mn></mrow> </math> , i.e., least squares regression, we give the first optimal bound of <math> <mrow><mover><mtext>Θ</mtext> <mo>˜</mo></mover> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <mi>ϵ</mi></mrow> <mo>)</mo></mrow> </mrow> </math> ) bits. For <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo></mrow> </math> , we obtain an <math> <mrow><mover><mi>O</mi> <mo>˜</mo></mover> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>/</mo> <mi>ε</mi> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <mtext>poly</mtext> <mo>(</mo> <mi>ε</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> </mrow> </math> upper bound. Notably, for <math><mi>d</mi></math> sufficiently large, our leading order term only depends linearly on <math><mrow><mn>1</mn> <mo>/</mo> <mi>ϵ</mi></mrow> </math> rather than quadratically. We also show communication lower bounds of <math><mrow><mtext>Ω</mtext> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <msup><mi>ε</mi> <mn>2</mn></msup> </mrow> <mo>)</mo></mrow> </mrow> </math> for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo></mrow> </math> and <math><mrow><mtext>Ω</mtext> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <mi>ε</mi></mrow> <mo>)</mo></mrow> </mrow> </math> for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>]</mo></mrow> </math> . Our bounds considerably improve previous bounds due to (Woodruff et al. COLT, 2013) and (Vempala et al., SODA, 2020).</p>\",\"PeriodicalId\":74504,\"journal\":{\"name\":\"Proceedings of machine learning research\",\"volume\":\"195 \",\"pages\":\"4902-4928\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646800/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of machine learning research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑的是协调器模型中分布式 ℓ p - 回归问题的随机通信复杂度,条件是 p∈ ( 0 , 2 ]。在这个问题中,有一个协调器和 s 个服务器。第 i 个服务器接收 A i∈ { - M , - M + 1 , ... , M } n × d 和 b i∈ { - M , - M + 1 , ... , M } n,协调者希望找到一个 ( 1 + ε ) 近似解,即 min x∈ R n ‖ ( ∑ i A i ) x - ( ∑ i b i ) ‖ p 。为方便起见,此处 M≤ poly(nd)。这种数据在不同服务器之间共享的模型通常被称为任意分区模型。我们在这个问题上得到了明显改善的边界。对于 p = 2,即最小二乘回归,我们首次给出了 Θ ˜ ( s d 2 + s d / ϵ ) 位的最优边界。对于 p∈ ( 1 , 2 ) ,我们得到 O ˜ ( s d 2 / ε + s d / poly ( ε ) ) 上限。值得注意的是,对于足够大的 d,我们的前导项仅线性地依赖于 1 / ϵ,而不是二次。我们还展示了 p∈ ( 0 , 1 ] 时的Ω ( s d 2 + s d / ε 2 ) 和 p∈ ( 1 , 2 ] 时的Ω ( s d 2 + s d / ε ) 的通信下界。我们的边界大大改进了之前的边界(Woodruff 等,COLT,2013 年)和(Vempala 等,SODA,2020 年)。
ℓp -Regression in the Arbitrary Partition Model of Communication.
We consider the randomized communication complexity of the distributed -regression problem in the coordinator model, for . In this problem, there is a coordinator and servers. The -th server receives and and the coordinator would like to find a -approximate solution to . Here poly(nd) for convenience. This model, where the data is additively shared across servers, is commonly referred to as the arbitrary partition model. We obtain significantly improved bounds for this problem. For , i.e., least squares regression, we give the first optimal bound of ) bits. For , we obtain an upper bound. Notably, for sufficiently large, our leading order term only depends linearly on rather than quadratically. We also show communication lower bounds of for and for . Our bounds considerably improve previous bounds due to (Woodruff et al. COLT, 2013) and (Vempala et al., SODA, 2020).