转录组学告知药理学鉴定表观遗传和细胞周期调节增强AAV的生产。

IF 4.6 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular Therapy-Methods & Clinical Development Pub Date : 2024-11-18 eCollection Date: 2024-12-12 DOI:10.1016/j.omtm.2024.101384
Joshua Tworig, Francis Grafton, Kaylin Fisher, Markus Hörer, Christopher A Reid, Mohammad A Mandegar
{"title":"转录组学告知药理学鉴定表观遗传和细胞周期调节增强AAV的生产。","authors":"Joshua Tworig, Francis Grafton, Kaylin Fisher, Markus Hörer, Christopher A Reid, Mohammad A Mandegar","doi":"10.1016/j.omtm.2024.101384","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant adeno-associated virus (rAAV) is a widely used viral vector for gene therapy. However, these vectors have limited availability due to manufacturing challenges with productivity and quality. These challenges can be addressed by better understanding the mechanisms that influence cellular responses during rAAV production. In this study, we aimed to identify targets that may enhance rAAV production using transcriptomic analyses of five cell lines with variable capacities for rAAV production. Using an intersectional approach, we measured the transcriptional responses of these cells during rAAV production and compared transcriptional profiles between high and base producers to identify possible targets for enhancing production. During rAAV production, we found transcriptional differences in cell cycle and nucleosome components contributed to proliferative capacity and DNA replication. We also saw upregulation of several core functions, including transcription, stress response, and Golgi and endoplasmic reticulum organization. Conversely, we saw consistent downregulation of other factors, including inhibitors of DNA-binding proteins and mitochondrial components. With a drug-connectivity analysis, we identified five classes of drugs that were predicted to enhance rAAV production. We also validated the efficacy of histone deacetylase and microtubule inhibitors. Our data uncover novel and previously identified pathways that may enhance rAAV production and quality to expand availability of rAAV for gene therapies.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"32 4","pages":"101384"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647610/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcriptomics-informed pharmacology identifies epigenetic and cell cycle regulators that enhance AAV production.\",\"authors\":\"Joshua Tworig, Francis Grafton, Kaylin Fisher, Markus Hörer, Christopher A Reid, Mohammad A Mandegar\",\"doi\":\"10.1016/j.omtm.2024.101384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recombinant adeno-associated virus (rAAV) is a widely used viral vector for gene therapy. However, these vectors have limited availability due to manufacturing challenges with productivity and quality. These challenges can be addressed by better understanding the mechanisms that influence cellular responses during rAAV production. In this study, we aimed to identify targets that may enhance rAAV production using transcriptomic analyses of five cell lines with variable capacities for rAAV production. Using an intersectional approach, we measured the transcriptional responses of these cells during rAAV production and compared transcriptional profiles between high and base producers to identify possible targets for enhancing production. During rAAV production, we found transcriptional differences in cell cycle and nucleosome components contributed to proliferative capacity and DNA replication. We also saw upregulation of several core functions, including transcription, stress response, and Golgi and endoplasmic reticulum organization. Conversely, we saw consistent downregulation of other factors, including inhibitors of DNA-binding proteins and mitochondrial components. With a drug-connectivity analysis, we identified five classes of drugs that were predicted to enhance rAAV production. We also validated the efficacy of histone deacetylase and microtubule inhibitors. Our data uncover novel and previously identified pathways that may enhance rAAV production and quality to expand availability of rAAV for gene therapies.</p>\",\"PeriodicalId\":54333,\"journal\":{\"name\":\"Molecular Therapy-Methods & Clinical Development\",\"volume\":\"32 4\",\"pages\":\"101384\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647610/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy-Methods & Clinical Development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omtm.2024.101384\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/12 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2024.101384","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

重组腺相关病毒(rAAV)是一种广泛用于基因治疗的病毒载体。然而,由于生产效率和质量方面的挑战,这些载体的可用性有限。要解决这些难题,就必须更好地了解 rAAV 生产过程中影响细胞反应的机制。在本研究中,我们对五种具有不同 rAAV 生产能力的细胞系进行了转录组分析,旨在确定可提高 rAAV 生产的靶标。我们采用交叉方法测量了这些细胞在 rAAV 生产过程中的转录反应,并比较了高产和低产细胞的转录概况,以确定提高产量的可能靶标。在 rAAV 生产过程中,我们发现细胞周期和核小体成分的转录差异有助于增殖能力和 DNA 复制。我们还发现了一些核心功能的上调,包括转录、应激反应以及高尔基体和内质网组织。与此相反,我们发现其他因素也在持续下调,包括 DNA 结合蛋白抑制剂和线粒体成分。通过药物连通性分析,我们确定了五类药物,这些药物预计会提高 rAAV 的产量。我们还验证了组蛋白去乙酰化酶和微管抑制剂的功效。我们的数据揭示了可能提高 rAAV 产量和质量的新途径和以前发现的途径,从而扩大了基因疗法中 rAAV 的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcriptomics-informed pharmacology identifies epigenetic and cell cycle regulators that enhance AAV production.

Recombinant adeno-associated virus (rAAV) is a widely used viral vector for gene therapy. However, these vectors have limited availability due to manufacturing challenges with productivity and quality. These challenges can be addressed by better understanding the mechanisms that influence cellular responses during rAAV production. In this study, we aimed to identify targets that may enhance rAAV production using transcriptomic analyses of five cell lines with variable capacities for rAAV production. Using an intersectional approach, we measured the transcriptional responses of these cells during rAAV production and compared transcriptional profiles between high and base producers to identify possible targets for enhancing production. During rAAV production, we found transcriptional differences in cell cycle and nucleosome components contributed to proliferative capacity and DNA replication. We also saw upregulation of several core functions, including transcription, stress response, and Golgi and endoplasmic reticulum organization. Conversely, we saw consistent downregulation of other factors, including inhibitors of DNA-binding proteins and mitochondrial components. With a drug-connectivity analysis, we identified five classes of drugs that were predicted to enhance rAAV production. We also validated the efficacy of histone deacetylase and microtubule inhibitors. Our data uncover novel and previously identified pathways that may enhance rAAV production and quality to expand availability of rAAV for gene therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy-Methods & Clinical Development
Molecular Therapy-Methods & Clinical Development Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.90
自引率
4.30%
发文量
163
审稿时长
12 weeks
期刊介绍: The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella. Topics of particular interest within the journal''s scope include: Gene vector engineering and production, Methods for targeted genome editing and engineering, Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells, Methods for gene and cell vector delivery, Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine, Analysis of gene and cell vector biodistribution and tracking, Pharmacology/toxicology studies of new and next-generation vectors, Methods for cell isolation, engineering, culture, expansion, and transplantation, Cell processing, storage, and banking for therapeutic application, Preclinical and QC/QA assay development, Translational and clinical scale-up and Good Manufacturing procedures and process development, Clinical protocol development, Computational and bioinformatic methods for analysis, modeling, or visualization of biological data, Negotiating the regulatory approval process and obtaining such approval for clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信