{"title":"Utilizing an In-silico Approach to Pinpoint Potential Biomarkers for Enhanced Early Detection of Colorectal Cancer.","authors":"Alireza Gharebaghi, Saeid Afshar, Leili Tapak, Hossein Ranjbar, Massoud Saidijam, Irina Dinu","doi":"10.1177/11769351241307163","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Colorectal cancer (CRC) is a prevalent disease characterized by significant dysregulation of gene expression. Non-invasive tests that utilize microRNAs (miRNAs) have shown promise for early CRC detection. This study aims to determine the association between miRNAs and key genes in CRC.</p><p><strong>Methods: </strong>Two datasets (GSE106817 and GSE23878) were extracted from the NCBI Gene Expression Omnibus database. Penalized logistic regression (PLR) and artificial neural networks (ANN) were used to identify relevant miRNAs and evaluate the classification accuracy of the selected miRNAs. The findings were validated through bipartite miRNA-mRNA interactions.</p><p><strong>Results: </strong>Our analysis identified 3 miRNAs: miR-1228, miR-6765-5p, and miR-6787-5p, achieving a total accuracy of over 90%. Based on the results of the mRNA-miRNA interaction network, CDK1 and MAD2L1 were identified as target genes of miR-6787-5p.</p><p><strong>Conclusions: </strong>Our results suggest that the identified miRNAs and target genes could serve as non-invasive biomarkers for diagnosing colorectal cancer, pending laboratory confirmation.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"23 ","pages":"11769351241307163"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648020/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351241307163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Utilizing an In-silico Approach to Pinpoint Potential Biomarkers for Enhanced Early Detection of Colorectal Cancer.
Objectives: Colorectal cancer (CRC) is a prevalent disease characterized by significant dysregulation of gene expression. Non-invasive tests that utilize microRNAs (miRNAs) have shown promise for early CRC detection. This study aims to determine the association between miRNAs and key genes in CRC.
Methods: Two datasets (GSE106817 and GSE23878) were extracted from the NCBI Gene Expression Omnibus database. Penalized logistic regression (PLR) and artificial neural networks (ANN) were used to identify relevant miRNAs and evaluate the classification accuracy of the selected miRNAs. The findings were validated through bipartite miRNA-mRNA interactions.
Results: Our analysis identified 3 miRNAs: miR-1228, miR-6765-5p, and miR-6787-5p, achieving a total accuracy of over 90%. Based on the results of the mRNA-miRNA interaction network, CDK1 and MAD2L1 were identified as target genes of miR-6787-5p.
Conclusions: Our results suggest that the identified miRNAs and target genes could serve as non-invasive biomarkers for diagnosing colorectal cancer, pending laboratory confirmation.
期刊介绍:
The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.