利用经验正交函数从声波传播时间反演水柱声速剖面。

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS
Sreeram Radhakrishnan, Anilkumar K
{"title":"利用经验正交函数从声波传播时间反演水柱声速剖面。","authors":"Sreeram Radhakrishnan, Anilkumar K","doi":"10.1121/10.0034622","DOIUrl":null,"url":null,"abstract":"<p><p>An acoustic propagation experiment was conducted in the western continental shelf of India (off Kollam, Kerala) in water depth of ∼71 m with seafloor consisting of hard sandy sediments. The multipath arrival times are obtained from peaks in acoustic impulse response measurements made on a single hydrophone for two source-receiver ranges of 245 m and 320 m. The arrival times are used for inverting the water column sound speed profile (SSP) utilizing the empirical orthogonal functions (EOFs), which can completely describe large datasets. The EOFs are generated from a seasonal dataset consisting of 12 SSPs collected once every month of the year at the same location. Inversion is formulated as an optimization problem and solved by employing the method of Differential Evolution Algorithm. A ray-theory based forward propagation model is implemented to model multipath arrival times with candidate SSPs, reconstructed from the EOFs as input for the two source receiver ranges. The objective function measures mismatch between the observed and modeled travel time estimates. The SSP estimated from modeled arrival times with EOFs as search space is found to agree reasonably well with in situ SSP for the two ranges.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"4061-4072"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inversion for water column sound speed profile from acoustic travel times using empirical orthogonal functions.\",\"authors\":\"Sreeram Radhakrishnan, Anilkumar K\",\"doi\":\"10.1121/10.0034622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An acoustic propagation experiment was conducted in the western continental shelf of India (off Kollam, Kerala) in water depth of ∼71 m with seafloor consisting of hard sandy sediments. The multipath arrival times are obtained from peaks in acoustic impulse response measurements made on a single hydrophone for two source-receiver ranges of 245 m and 320 m. The arrival times are used for inverting the water column sound speed profile (SSP) utilizing the empirical orthogonal functions (EOFs), which can completely describe large datasets. The EOFs are generated from a seasonal dataset consisting of 12 SSPs collected once every month of the year at the same location. Inversion is formulated as an optimization problem and solved by employing the method of Differential Evolution Algorithm. A ray-theory based forward propagation model is implemented to model multipath arrival times with candidate SSPs, reconstructed from the EOFs as input for the two source receiver ranges. The objective function measures mismatch between the observed and modeled travel time estimates. The SSP estimated from modeled arrival times with EOFs as search space is found to agree reasonably well with in situ SSP for the two ranges.</p>\",\"PeriodicalId\":17168,\"journal\":{\"name\":\"Journal of the Acoustical Society of America\",\"volume\":\"156 6\",\"pages\":\"4061-4072\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of America\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0034622\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034622","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inversion for water column sound speed profile from acoustic travel times using empirical orthogonal functions.

An acoustic propagation experiment was conducted in the western continental shelf of India (off Kollam, Kerala) in water depth of ∼71 m with seafloor consisting of hard sandy sediments. The multipath arrival times are obtained from peaks in acoustic impulse response measurements made on a single hydrophone for two source-receiver ranges of 245 m and 320 m. The arrival times are used for inverting the water column sound speed profile (SSP) utilizing the empirical orthogonal functions (EOFs), which can completely describe large datasets. The EOFs are generated from a seasonal dataset consisting of 12 SSPs collected once every month of the year at the same location. Inversion is formulated as an optimization problem and solved by employing the method of Differential Evolution Algorithm. A ray-theory based forward propagation model is implemented to model multipath arrival times with candidate SSPs, reconstructed from the EOFs as input for the two source receiver ranges. The objective function measures mismatch between the observed and modeled travel time estimates. The SSP estimated from modeled arrival times with EOFs as search space is found to agree reasonably well with in situ SSP for the two ranges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信