损伤小鼠脊髓中脂质代谢的演变

IF 3.9 2区 医学 Q1 CLINICAL NEUROLOGY
Natalie E Scholpa, Epiphani C Simmons, Justin M Snider, Kelsey Barrett, Lauren G Buss, Rick G Schnellmann
{"title":"损伤小鼠脊髓中脂质代谢的演变","authors":"Natalie E Scholpa, Epiphani C Simmons, Justin M Snider, Kelsey Barrett, Lauren G Buss, Rick G Schnellmann","doi":"10.1089/neu.2024.0385","DOIUrl":null,"url":null,"abstract":"<p><p>Following spinal cord injury (SCI), there is a short-lived recovery phase that ultimately plateaus. Understanding changes within the spinal cord over time may facilitate targeted approaches to prevent and/or reverse this plateau and allow for continued recovery. Untargeted metabolomics revealed distinct metabolic profiles within the injured cord during recovery (7 days postinjury [DPI]) and plateau (21 DPI) periods in a mouse model of severe contusion SCI. Alterations in lipid metabolites, particularly those involved in phospholipid (PL) metabolism, largely contributed to overall differences. PLs are hydrolyzed by phospholipases A2 (PLA2s), yielding lysophospholipids (LPLs) and fatty acids (FAs). PL metabolites decreased between 7 and 21 DPI, whereas LPLs increased at 21 DPI, suggesting amplified PL metabolism during the plateau phase. Expression of various PLA2s also differed between the two time points, further supporting dysregulation of PL metabolism during the two phases of injury. FAs, which can promote inflammation, mitochondrial dysfunction, and neuronal damage, were increased regardless of time point. Carnitine can bind with FAs to form acylcarnitines, lessening FA-induced toxicity. In contrast to FAs, carnitine and acylcarnitines were increased at 7 DPI, but decreased at 21 DPI, suggesting a loss of carnitine-mediated mitigation of FA toxicity at the later time point, which may contribute to the cessation of recovery post-SCI. Alterations in oxidative phosphorylation and tricarboxylic acid cycle metabolites were also observed, indicating persistent although dissimilar disruptions in mitochondrial function. These data aid in increasing our understanding of lipid metabolism following SCI and have the potential to lead to new biomarkers and/or therapeutic strategies.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of Lipid Metabolism in the Injured Mouse Spinal Cord.\",\"authors\":\"Natalie E Scholpa, Epiphani C Simmons, Justin M Snider, Kelsey Barrett, Lauren G Buss, Rick G Schnellmann\",\"doi\":\"10.1089/neu.2024.0385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Following spinal cord injury (SCI), there is a short-lived recovery phase that ultimately plateaus. Understanding changes within the spinal cord over time may facilitate targeted approaches to prevent and/or reverse this plateau and allow for continued recovery. Untargeted metabolomics revealed distinct metabolic profiles within the injured cord during recovery (7 days postinjury [DPI]) and plateau (21 DPI) periods in a mouse model of severe contusion SCI. Alterations in lipid metabolites, particularly those involved in phospholipid (PL) metabolism, largely contributed to overall differences. PLs are hydrolyzed by phospholipases A2 (PLA2s), yielding lysophospholipids (LPLs) and fatty acids (FAs). PL metabolites decreased between 7 and 21 DPI, whereas LPLs increased at 21 DPI, suggesting amplified PL metabolism during the plateau phase. Expression of various PLA2s also differed between the two time points, further supporting dysregulation of PL metabolism during the two phases of injury. FAs, which can promote inflammation, mitochondrial dysfunction, and neuronal damage, were increased regardless of time point. Carnitine can bind with FAs to form acylcarnitines, lessening FA-induced toxicity. In contrast to FAs, carnitine and acylcarnitines were increased at 7 DPI, but decreased at 21 DPI, suggesting a loss of carnitine-mediated mitigation of FA toxicity at the later time point, which may contribute to the cessation of recovery post-SCI. Alterations in oxidative phosphorylation and tricarboxylic acid cycle metabolites were also observed, indicating persistent although dissimilar disruptions in mitochondrial function. These data aid in increasing our understanding of lipid metabolism following SCI and have the potential to lead to new biomarkers and/or therapeutic strategies.</p>\",\"PeriodicalId\":16512,\"journal\":{\"name\":\"Journal of neurotrauma\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurotrauma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/neu.2024.0385\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurotrauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/neu.2024.0385","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of Lipid Metabolism in the Injured Mouse Spinal Cord.

Following spinal cord injury (SCI), there is a short-lived recovery phase that ultimately plateaus. Understanding changes within the spinal cord over time may facilitate targeted approaches to prevent and/or reverse this plateau and allow for continued recovery. Untargeted metabolomics revealed distinct metabolic profiles within the injured cord during recovery (7 days postinjury [DPI]) and plateau (21 DPI) periods in a mouse model of severe contusion SCI. Alterations in lipid metabolites, particularly those involved in phospholipid (PL) metabolism, largely contributed to overall differences. PLs are hydrolyzed by phospholipases A2 (PLA2s), yielding lysophospholipids (LPLs) and fatty acids (FAs). PL metabolites decreased between 7 and 21 DPI, whereas LPLs increased at 21 DPI, suggesting amplified PL metabolism during the plateau phase. Expression of various PLA2s also differed between the two time points, further supporting dysregulation of PL metabolism during the two phases of injury. FAs, which can promote inflammation, mitochondrial dysfunction, and neuronal damage, were increased regardless of time point. Carnitine can bind with FAs to form acylcarnitines, lessening FA-induced toxicity. In contrast to FAs, carnitine and acylcarnitines were increased at 7 DPI, but decreased at 21 DPI, suggesting a loss of carnitine-mediated mitigation of FA toxicity at the later time point, which may contribute to the cessation of recovery post-SCI. Alterations in oxidative phosphorylation and tricarboxylic acid cycle metabolites were also observed, indicating persistent although dissimilar disruptions in mitochondrial function. These data aid in increasing our understanding of lipid metabolism following SCI and have the potential to lead to new biomarkers and/or therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neurotrauma
Journal of neurotrauma 医学-临床神经学
CiteScore
9.20
自引率
7.10%
发文量
233
审稿时长
3 months
期刊介绍: Journal of Neurotrauma is the flagship, peer-reviewed publication for reporting on the latest advances in both the clinical and laboratory investigation of traumatic brain and spinal cord injury. The Journal focuses on the basic pathobiology of injury to the central nervous system, while considering preclinical and clinical trials targeted at improving both the early management and long-term care and recovery of traumatically injured patients. This is the essential journal publishing cutting-edge basic and translational research in traumatically injured human and animal studies, with emphasis on neurodegenerative disease research linked to CNS trauma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信