榴莲:基于结构的3D分子生成的综合基准。

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Dou Nie, Huifeng Zhao, Odin Zhang, Gaoqi Weng, Hui Zhang, Jieyu Jin, Haitao Lin, Yufei Huang, Liwei Liu, Dan Li, Tingjun Hou, Yu Kang
{"title":"榴莲:基于结构的3D分子生成的综合基准。","authors":"Dou Nie, Huifeng Zhao, Odin Zhang, Gaoqi Weng, Hui Zhang, Jieyu Jin, Haitao Lin, Yufei Huang, Liwei Liu, Dan Li, Tingjun Hou, Yu Kang","doi":"10.1021/acs.jcim.4c02232","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) molecular generation models employ deep neural networks to simultaneously generate both topological representation and molecular conformations. Due to their advantages in utilizing the structural and interaction information on targets, as well as their reduced reliance on existing bioactivity data, these models have attracted widespread attention. However, limited training and testing data sets and the unexpected biases inherent in single evaluation metrics pose a significant challenge in comparing these models in practical settings. In this work, we proposed Durian, an evaluation framework for structure-based 3D molecular generation that incorporates protein-ligand data with experimental affinity and a comprehensive array of physicochemical and geometric metrics. The benchmark tasks encompass assessing the capability of models to reproduce the property distribution of training sets, generate molecules with rational distributions of drug-related properties, and exhibit potential high affinity toward given targets. Binding affinities were evaluated using three independent docking methods (QuickVina2, Surflex and Gnina) with both \"<b>Dock</b>\" and \"<b>Score</b>\" modes to reduce false positives arising from conformational searches or scoring functions. Specifically, we applied Durian to six 3D molecular generation methods: LiGAN, Pocket2Mol, DiffSBDD, SBDD, GraphBP, and SurfGen. While most methods demonstrated the ability to generate drug-like small molecules with reasonable physicochemical properties, they exhibited varying degrees of limitations in balancing novelty, structural rationality, and synthetic accessibility, thereby constraining their practical applications in drug discovery. Based on a total of 17 metrics, Durian highlights the importance of multiobjective optimization in 3D molecular generation methods. For instance, SurfGen and SBDD showed relatively comprehensive performance but could benefit from further improvements in molecular conformational rationality. Our evaluation framework is expected to provide meaningful guidance for the selection, optimization, and application of 3D generative models in practical drug design tasks.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"173-186"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Durian: A Comprehensive Benchmark for Structure-Based 3D Molecular Generation.\",\"authors\":\"Dou Nie, Huifeng Zhao, Odin Zhang, Gaoqi Weng, Hui Zhang, Jieyu Jin, Haitao Lin, Yufei Huang, Liwei Liu, Dan Li, Tingjun Hou, Yu Kang\",\"doi\":\"10.1021/acs.jcim.4c02232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) molecular generation models employ deep neural networks to simultaneously generate both topological representation and molecular conformations. Due to their advantages in utilizing the structural and interaction information on targets, as well as their reduced reliance on existing bioactivity data, these models have attracted widespread attention. However, limited training and testing data sets and the unexpected biases inherent in single evaluation metrics pose a significant challenge in comparing these models in practical settings. In this work, we proposed Durian, an evaluation framework for structure-based 3D molecular generation that incorporates protein-ligand data with experimental affinity and a comprehensive array of physicochemical and geometric metrics. The benchmark tasks encompass assessing the capability of models to reproduce the property distribution of training sets, generate molecules with rational distributions of drug-related properties, and exhibit potential high affinity toward given targets. Binding affinities were evaluated using three independent docking methods (QuickVina2, Surflex and Gnina) with both \\\"<b>Dock</b>\\\" and \\\"<b>Score</b>\\\" modes to reduce false positives arising from conformational searches or scoring functions. Specifically, we applied Durian to six 3D molecular generation methods: LiGAN, Pocket2Mol, DiffSBDD, SBDD, GraphBP, and SurfGen. While most methods demonstrated the ability to generate drug-like small molecules with reasonable physicochemical properties, they exhibited varying degrees of limitations in balancing novelty, structural rationality, and synthetic accessibility, thereby constraining their practical applications in drug discovery. Based on a total of 17 metrics, Durian highlights the importance of multiobjective optimization in 3D molecular generation methods. For instance, SurfGen and SBDD showed relatively comprehensive performance but could benefit from further improvements in molecular conformational rationality. Our evaluation framework is expected to provide meaningful guidance for the selection, optimization, and application of 3D generative models in practical drug design tasks.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"173-186\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c02232\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02232","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

三维(3D)分子生成模型采用深度神经网络同时生成拓扑表示和分子构象。由于其在利用靶点结构和相互作用信息方面的优势,以及对现有生物活性数据的依赖程度降低,这些模型受到了广泛的关注。然而,有限的训练和测试数据集以及单一评估指标固有的意想不到的偏差给在实际环境中比较这些模型带来了重大挑战。在这项工作中,我们提出了榴莲,一个基于结构的三维分子生成的评估框架,结合了具有实验亲和力的蛋白质配体数据和一系列综合的物理化学和几何指标。基准任务包括评估模型的能力,以再现训练集的属性分布,生成具有药物相关属性合理分布的分子,并表现出对给定目标的潜在高亲和力。结合亲和度采用三种独立的对接方法(QuickVina2, Surflex和Gnina),采用“Dock”和“Score”模式进行评估,以减少构象搜索或评分功能产生的误报。具体来说,我们将榴莲应用于六种3D分子生成方法:LiGAN、Pocket2Mol、DiffSBDD、SBDD、GraphBP和SurfGen。虽然大多数方法证明了产生具有合理物理化学性质的类药物小分子的能力,但它们在平衡新颖性、结构合理性和合成可及性方面表现出不同程度的局限性,从而限制了它们在药物发现中的实际应用。基于总共17个指标,Durian强调了多目标优化在3D分子生成方法中的重要性。例如,SurfGen和SBDD表现出相对全面的性能,但可以进一步提高分子构象合理性。我们的评估框架有望为实际药物设计任务中3D生成模型的选择、优化和应用提供有意义的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Durian: A Comprehensive Benchmark for Structure-Based 3D Molecular Generation.

Three-dimensional (3D) molecular generation models employ deep neural networks to simultaneously generate both topological representation and molecular conformations. Due to their advantages in utilizing the structural and interaction information on targets, as well as their reduced reliance on existing bioactivity data, these models have attracted widespread attention. However, limited training and testing data sets and the unexpected biases inherent in single evaluation metrics pose a significant challenge in comparing these models in practical settings. In this work, we proposed Durian, an evaluation framework for structure-based 3D molecular generation that incorporates protein-ligand data with experimental affinity and a comprehensive array of physicochemical and geometric metrics. The benchmark tasks encompass assessing the capability of models to reproduce the property distribution of training sets, generate molecules with rational distributions of drug-related properties, and exhibit potential high affinity toward given targets. Binding affinities were evaluated using three independent docking methods (QuickVina2, Surflex and Gnina) with both "Dock" and "Score" modes to reduce false positives arising from conformational searches or scoring functions. Specifically, we applied Durian to six 3D molecular generation methods: LiGAN, Pocket2Mol, DiffSBDD, SBDD, GraphBP, and SurfGen. While most methods demonstrated the ability to generate drug-like small molecules with reasonable physicochemical properties, they exhibited varying degrees of limitations in balancing novelty, structural rationality, and synthetic accessibility, thereby constraining their practical applications in drug discovery. Based on a total of 17 metrics, Durian highlights the importance of multiobjective optimization in 3D molecular generation methods. For instance, SurfGen and SBDD showed relatively comprehensive performance but could benefit from further improvements in molecular conformational rationality. Our evaluation framework is expected to provide meaningful guidance for the selection, optimization, and application of 3D generative models in practical drug design tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信