SMPISD-MTPNet:利用多任务感知网络进行场景语义先验辅助红外船舶探测

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chen Hu;Xiaogang Dong;Yian Huang;Lele Wang;Liang Xu;Tian Pu;Zhenming Peng
{"title":"SMPISD-MTPNet:利用多任务感知网络进行场景语义先验辅助红外船舶探测","authors":"Chen Hu;Xiaogang Dong;Yian Huang;Lele Wang;Liang Xu;Tian Pu;Zhenming Peng","doi":"10.1109/TGRS.2024.3516879","DOIUrl":null,"url":null,"abstract":"Infrared ship detection (IRSD) is crucial for numerous applications but faces challenges, such as small targets and complex backgrounds, resulting in misdetections and false alarms. In order to address these challenges, we propose the scene semantic prior-assisted infrared ship detection using multitask perception network (SMPISD-MTPNet). This network employs multitask perception: one task is to predict targets, and the other focuses on scene perception to suppress false alarms caused by background interference. To highlight dim and small targets, we use the scene semantic extractor (SSE) to guide the network using features extracted based on expert knowledge and the gradient-based module to enhance the edge and point features. We apply data augmentation to the networks and employ a training trick called soft fine-tuning to improve the network’s generalization and suppress the distortion caused by the augmentation process. Due to the unavailability of datasets with appropriate scene labels for scene perception, we have developed a new dataset called the infrared ship dataset with scene segmentation (IRSDSS). In addition, we have enhanced an existing dataset by adding scene masks and created the enhanced infrared ship detection dataset (EISDD). Our evaluations using both IRSDSS and EISDD demonstrate that SMPISD-MTPNet exceeds contemporary state-of-the-art (SOTA) methods in accuracy. The source code and dataset for this research can be available at: \n<uri>https://github.com/greekinRoma/SMPISD-MTPNet</uri>\n.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-14"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SMPISD-MTPNet: Scene Semantic Prior-Assisted Infrared Ship Detection Using Multitask Perception Networks\",\"authors\":\"Chen Hu;Xiaogang Dong;Yian Huang;Lele Wang;Liang Xu;Tian Pu;Zhenming Peng\",\"doi\":\"10.1109/TGRS.2024.3516879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infrared ship detection (IRSD) is crucial for numerous applications but faces challenges, such as small targets and complex backgrounds, resulting in misdetections and false alarms. In order to address these challenges, we propose the scene semantic prior-assisted infrared ship detection using multitask perception network (SMPISD-MTPNet). This network employs multitask perception: one task is to predict targets, and the other focuses on scene perception to suppress false alarms caused by background interference. To highlight dim and small targets, we use the scene semantic extractor (SSE) to guide the network using features extracted based on expert knowledge and the gradient-based module to enhance the edge and point features. We apply data augmentation to the networks and employ a training trick called soft fine-tuning to improve the network’s generalization and suppress the distortion caused by the augmentation process. Due to the unavailability of datasets with appropriate scene labels for scene perception, we have developed a new dataset called the infrared ship dataset with scene segmentation (IRSDSS). In addition, we have enhanced an existing dataset by adding scene masks and created the enhanced infrared ship detection dataset (EISDD). Our evaluations using both IRSDSS and EISDD demonstrate that SMPISD-MTPNet exceeds contemporary state-of-the-art (SOTA) methods in accuracy. The source code and dataset for this research can be available at: \\n<uri>https://github.com/greekinRoma/SMPISD-MTPNet</uri>\\n.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":\"63 \",\"pages\":\"1-14\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10802996/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10802996/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

红外舰船探测(IRSD)在许多应用中都是至关重要的,但也面临着挑战,例如小目标和复杂背景,导致误检和误报。为了解决这些问题,我们提出了基于多任务感知网络(SMPISD-MTPNet)的场景语义先验辅助红外船舶检测方法。该网络采用多任务感知,一项任务是预测目标,另一项任务是场景感知,以抑制背景干扰引起的误报。为了突出弱小目标,我们使用场景语义提取器(SSE)来引导网络,使用基于专家知识提取的特征和基于梯度的模块来增强边缘和点特征。我们将数据增强应用于网络,并采用一种称为软微调的训练技巧来提高网络的泛化性并抑制由增强过程引起的失真。由于缺乏具有适当场景标签的数据集用于场景感知,我们开发了一个新的数据集,称为带有场景分割的红外船舶数据集(IRSDSS)。此外,我们通过添加场景蒙版增强了现有数据集,并创建了增强的红外船舶检测数据集(EISDD)。我们使用IRSDSS和EISDD进行的评估表明,SMPISD-MTPNet在准确性上超过了当代最先进的(SOTA)方法。本研究的源代码和数据集可以在https://github.com/greekinRoma/SMPISD-MTPNet上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SMPISD-MTPNet: Scene Semantic Prior-Assisted Infrared Ship Detection Using Multitask Perception Networks
Infrared ship detection (IRSD) is crucial for numerous applications but faces challenges, such as small targets and complex backgrounds, resulting in misdetections and false alarms. In order to address these challenges, we propose the scene semantic prior-assisted infrared ship detection using multitask perception network (SMPISD-MTPNet). This network employs multitask perception: one task is to predict targets, and the other focuses on scene perception to suppress false alarms caused by background interference. To highlight dim and small targets, we use the scene semantic extractor (SSE) to guide the network using features extracted based on expert knowledge and the gradient-based module to enhance the edge and point features. We apply data augmentation to the networks and employ a training trick called soft fine-tuning to improve the network’s generalization and suppress the distortion caused by the augmentation process. Due to the unavailability of datasets with appropriate scene labels for scene perception, we have developed a new dataset called the infrared ship dataset with scene segmentation (IRSDSS). In addition, we have enhanced an existing dataset by adding scene masks and created the enhanced infrared ship detection dataset (EISDD). Our evaluations using both IRSDSS and EISDD demonstrate that SMPISD-MTPNet exceeds contemporary state-of-the-art (SOTA) methods in accuracy. The source code and dataset for this research can be available at: https://github.com/greekinRoma/SMPISD-MTPNet .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信