Haeyong Kang;Jaehong Yoon;Sung Ju Hwang;Chang D. Yoo
{"title":"持续学习:用于视频表示的无遗忘制胜子网络","authors":"Haeyong Kang;Jaehong Yoon;Sung Ju Hwang;Chang D. Yoo","doi":"10.1109/TPAMI.2024.3518588","DOIUrl":null,"url":null,"abstract":"Inspired by the Lottery Ticket Hypothesis (LTH), which highlights the existence of efficient subnetworks within larger, dense networks, a high-performing Winning Subnetwork (WSN) in terms of task performance under appropriate sparsity conditions is considered for various continual learning tasks. It leverages pre-existing weights from dense networks to achieve efficient learning in Task Incremental Learning (TIL) and Task-agnostic Incremental Learning (TaIL) scenarios. In Few-Shot Class Incremental Learning (FSCIL), a variation of WSN referred to as the Soft subnetwork (SoftNet) is designed to prevent overfitting when the data samples are scarce. Furthermore, the sparse reuse of WSN weights is considered for Video Incremental Learning (VIL). The use of Fourier Subneural Operator (FSO) within WSN is considered. It enables compact encoding of videos and identifies reusable subnetworks across varying bandwidths. We have integrated FSO into different architectural frameworks for continual learning, including VIL, TIL, and FSCIL. Our comprehensive experiments demonstrate FSO's effectiveness, significantly improving task performance at various convolutional representational levels. Specifically, FSO enhances higher-layer performance in TIL and FSCIL and lower-layer performance in VIL.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 3","pages":"2140-2156"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continual Learning: Forget-Free Winning Subnetworks for Video Representations\",\"authors\":\"Haeyong Kang;Jaehong Yoon;Sung Ju Hwang;Chang D. Yoo\",\"doi\":\"10.1109/TPAMI.2024.3518588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the Lottery Ticket Hypothesis (LTH), which highlights the existence of efficient subnetworks within larger, dense networks, a high-performing Winning Subnetwork (WSN) in terms of task performance under appropriate sparsity conditions is considered for various continual learning tasks. It leverages pre-existing weights from dense networks to achieve efficient learning in Task Incremental Learning (TIL) and Task-agnostic Incremental Learning (TaIL) scenarios. In Few-Shot Class Incremental Learning (FSCIL), a variation of WSN referred to as the Soft subnetwork (SoftNet) is designed to prevent overfitting when the data samples are scarce. Furthermore, the sparse reuse of WSN weights is considered for Video Incremental Learning (VIL). The use of Fourier Subneural Operator (FSO) within WSN is considered. It enables compact encoding of videos and identifies reusable subnetworks across varying bandwidths. We have integrated FSO into different architectural frameworks for continual learning, including VIL, TIL, and FSCIL. Our comprehensive experiments demonstrate FSO's effectiveness, significantly improving task performance at various convolutional representational levels. Specifically, FSO enhances higher-layer performance in TIL and FSCIL and lower-layer performance in VIL.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 3\",\"pages\":\"2140-2156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10803959/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10803959/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continual Learning: Forget-Free Winning Subnetworks for Video Representations
Inspired by the Lottery Ticket Hypothesis (LTH), which highlights the existence of efficient subnetworks within larger, dense networks, a high-performing Winning Subnetwork (WSN) in terms of task performance under appropriate sparsity conditions is considered for various continual learning tasks. It leverages pre-existing weights from dense networks to achieve efficient learning in Task Incremental Learning (TIL) and Task-agnostic Incremental Learning (TaIL) scenarios. In Few-Shot Class Incremental Learning (FSCIL), a variation of WSN referred to as the Soft subnetwork (SoftNet) is designed to prevent overfitting when the data samples are scarce. Furthermore, the sparse reuse of WSN weights is considered for Video Incremental Learning (VIL). The use of Fourier Subneural Operator (FSO) within WSN is considered. It enables compact encoding of videos and identifies reusable subnetworks across varying bandwidths. We have integrated FSO into different architectural frameworks for continual learning, including VIL, TIL, and FSCIL. Our comprehensive experiments demonstrate FSO's effectiveness, significantly improving task performance at various convolutional representational levels. Specifically, FSO enhances higher-layer performance in TIL and FSCIL and lower-layer performance in VIL.