Tomaz Chorro, Clemens Kaussler, Julia V. Kolodiazhnaia, Frank Jensen, Troels Skrydstrup, Carlos Roque Correia
{"title":"通过一锅 Heck-Matsuda 反应直接从硝基烯烃串联合成对映体丰富的螺内酯","authors":"Tomaz Chorro, Clemens Kaussler, Julia V. Kolodiazhnaia, Frank Jensen, Troels Skrydstrup, Carlos Roque Correia","doi":"10.1039/d4qo01979b","DOIUrl":null,"url":null,"abstract":"We report herein a novel, efficient, and expeditious approach for enantioselective intramolecular carbonylative Heck-Matsuda reaction, employing highly accessible, stable, and cost-effective nitroarenes as masked electrophiles. This tandem process combines the one-pot reduction of nitroarenes to the respective anilines, diazotization, Heck-Matsuda, carbonylation, and cyclization, enabling the synthesis of enantioenriched spirolactones. The method achieves overall yields of up to 76% with excellent enantiomeric ratios of up to 96:4 under mild conditions. Isotopically labeled products are readily obtained with near stoichiometric 13C carbon monoxide. Importantly, nitroarenes are used as masked electrophiles, which serve as an advantageous alternative to anilines and aryldiazonium salts for the Heck-Matsuda reaction. This approach thereby avoids the isolation of sensitive aryldiazonium salt intermediates and, consequently, the dangers associated with them. Density Functional Theory (DFT) calculations provide precise insights into the enantioenrichment mechanism, highlighting the significance of Pd carbonyl complexes for efficient diastereoconvergence. Microkinetic modeling of the computationally obtained reaction network results in an enantioenrichment of sub-kcal-accuracy in comparison to the experiment. This work not only showcases the level of complexity achievable in the field of tandem reactions but also highlights the utility of nitroarenes in complex organic transformations, demonstrating their potential for both academic and industrial applications.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"23 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tandem Synthesis of Enantioenriched Spirolactones via One-Pot Heck-Matsuda Reactions Directly from Nitroarenes\",\"authors\":\"Tomaz Chorro, Clemens Kaussler, Julia V. Kolodiazhnaia, Frank Jensen, Troels Skrydstrup, Carlos Roque Correia\",\"doi\":\"10.1039/d4qo01979b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report herein a novel, efficient, and expeditious approach for enantioselective intramolecular carbonylative Heck-Matsuda reaction, employing highly accessible, stable, and cost-effective nitroarenes as masked electrophiles. This tandem process combines the one-pot reduction of nitroarenes to the respective anilines, diazotization, Heck-Matsuda, carbonylation, and cyclization, enabling the synthesis of enantioenriched spirolactones. The method achieves overall yields of up to 76% with excellent enantiomeric ratios of up to 96:4 under mild conditions. Isotopically labeled products are readily obtained with near stoichiometric 13C carbon monoxide. Importantly, nitroarenes are used as masked electrophiles, which serve as an advantageous alternative to anilines and aryldiazonium salts for the Heck-Matsuda reaction. This approach thereby avoids the isolation of sensitive aryldiazonium salt intermediates and, consequently, the dangers associated with them. Density Functional Theory (DFT) calculations provide precise insights into the enantioenrichment mechanism, highlighting the significance of Pd carbonyl complexes for efficient diastereoconvergence. Microkinetic modeling of the computationally obtained reaction network results in an enantioenrichment of sub-kcal-accuracy in comparison to the experiment. This work not only showcases the level of complexity achievable in the field of tandem reactions but also highlights the utility of nitroarenes in complex organic transformations, demonstrating their potential for both academic and industrial applications.\",\"PeriodicalId\":97,\"journal\":{\"name\":\"Organic Chemistry Frontiers\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qo01979b\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qo01979b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Tandem Synthesis of Enantioenriched Spirolactones via One-Pot Heck-Matsuda Reactions Directly from Nitroarenes
We report herein a novel, efficient, and expeditious approach for enantioselective intramolecular carbonylative Heck-Matsuda reaction, employing highly accessible, stable, and cost-effective nitroarenes as masked electrophiles. This tandem process combines the one-pot reduction of nitroarenes to the respective anilines, diazotization, Heck-Matsuda, carbonylation, and cyclization, enabling the synthesis of enantioenriched spirolactones. The method achieves overall yields of up to 76% with excellent enantiomeric ratios of up to 96:4 under mild conditions. Isotopically labeled products are readily obtained with near stoichiometric 13C carbon monoxide. Importantly, nitroarenes are used as masked electrophiles, which serve as an advantageous alternative to anilines and aryldiazonium salts for the Heck-Matsuda reaction. This approach thereby avoids the isolation of sensitive aryldiazonium salt intermediates and, consequently, the dangers associated with them. Density Functional Theory (DFT) calculations provide precise insights into the enantioenrichment mechanism, highlighting the significance of Pd carbonyl complexes for efficient diastereoconvergence. Microkinetic modeling of the computationally obtained reaction network results in an enantioenrichment of sub-kcal-accuracy in comparison to the experiment. This work not only showcases the level of complexity achievable in the field of tandem reactions but also highlights the utility of nitroarenes in complex organic transformations, demonstrating their potential for both academic and industrial applications.
期刊介绍:
Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.