{"title":"用于电动汽车的集无线电力传输、车载充电器和辅助电源模块于一体的充电器","authors":"Yuanchao Wu;Wenbin Pan;Wei Xu;Ronghuan Xie;Yizhan Zhuang;Xingkui Mao;Yiming Zhang","doi":"10.1109/TPEL.2024.3518499","DOIUrl":null,"url":null,"abstract":"The rapidly developing electric vehicles (EVs) calls for improvement in the charging system for the high-voltage (HV) and low-voltage (LV) batteries in EVs. In the conventional EV charger, wireless power transfer (WPT), onboard charger (OBC), and auxiliary power module (APM) are three separate structures. This article proposes an integrated charger for WPT, OBC, and APM by sharing power conversion stages with the advantages of cost effectiveness and high-power density. The transformer of OBC can be seen as two strongly coupled coils, and the secondary-side coil can be loosely coupled with the transmitting coil of the WPT system, serving as a receiving coil. A transformer can be employed on the receiving side to integrate the APM with WPT. In this way, the receiving coil, the compensation network, and the power electronics converter can be shared. The integrated structure can work in three modes. In the first mode (wireless charging mode) and the second mode (conductive charging mode), the utility delivers power to the HV and LV batteries simultaneously. In the third mode (HV-LV mode), the LV battery is charged by the HV battery through APM. An experimental prototype is implemented to validate the proposal.","PeriodicalId":13267,"journal":{"name":"IEEE Transactions on Power Electronics","volume":"40 4","pages":"6334-6344"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Integrated Charger of Wireless Power Transfer, Onboard Charger, and Auxiliary Power Module for Electric Vehicles\",\"authors\":\"Yuanchao Wu;Wenbin Pan;Wei Xu;Ronghuan Xie;Yizhan Zhuang;Xingkui Mao;Yiming Zhang\",\"doi\":\"10.1109/TPEL.2024.3518499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapidly developing electric vehicles (EVs) calls for improvement in the charging system for the high-voltage (HV) and low-voltage (LV) batteries in EVs. In the conventional EV charger, wireless power transfer (WPT), onboard charger (OBC), and auxiliary power module (APM) are three separate structures. This article proposes an integrated charger for WPT, OBC, and APM by sharing power conversion stages with the advantages of cost effectiveness and high-power density. The transformer of OBC can be seen as two strongly coupled coils, and the secondary-side coil can be loosely coupled with the transmitting coil of the WPT system, serving as a receiving coil. A transformer can be employed on the receiving side to integrate the APM with WPT. In this way, the receiving coil, the compensation network, and the power electronics converter can be shared. The integrated structure can work in three modes. In the first mode (wireless charging mode) and the second mode (conductive charging mode), the utility delivers power to the HV and LV batteries simultaneously. In the third mode (HV-LV mode), the LV battery is charged by the HV battery through APM. An experimental prototype is implemented to validate the proposal.\",\"PeriodicalId\":13267,\"journal\":{\"name\":\"IEEE Transactions on Power Electronics\",\"volume\":\"40 4\",\"pages\":\"6334-6344\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Power Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804007/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10804007/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Integrated Charger of Wireless Power Transfer, Onboard Charger, and Auxiliary Power Module for Electric Vehicles
The rapidly developing electric vehicles (EVs) calls for improvement in the charging system for the high-voltage (HV) and low-voltage (LV) batteries in EVs. In the conventional EV charger, wireless power transfer (WPT), onboard charger (OBC), and auxiliary power module (APM) are three separate structures. This article proposes an integrated charger for WPT, OBC, and APM by sharing power conversion stages with the advantages of cost effectiveness and high-power density. The transformer of OBC can be seen as two strongly coupled coils, and the secondary-side coil can be loosely coupled with the transmitting coil of the WPT system, serving as a receiving coil. A transformer can be employed on the receiving side to integrate the APM with WPT. In this way, the receiving coil, the compensation network, and the power electronics converter can be shared. The integrated structure can work in three modes. In the first mode (wireless charging mode) and the second mode (conductive charging mode), the utility delivers power to the HV and LV batteries simultaneously. In the third mode (HV-LV mode), the LV battery is charged by the HV battery through APM. An experimental prototype is implemented to validate the proposal.
期刊介绍:
The IEEE Transactions on Power Electronics journal covers all issues of widespread or generic interest to engineers who work in the field of power electronics. The Journal editors will enforce standards and a review policy equivalent to the IEEE Transactions, and only papers of high technical quality will be accepted. Papers which treat new and novel device, circuit or system issues which are of generic interest to power electronics engineers are published. Papers which are not within the scope of this Journal will be forwarded to the appropriate IEEE Journal or Transactions editors. Examples of papers which would be more appropriately published in other Journals or Transactions include: 1) Papers describing semiconductor or electron device physics. These papers would be more appropriate for the IEEE Transactions on Electron Devices. 2) Papers describing applications in specific areas: e.g., industry, instrumentation, utility power systems, aerospace, industrial electronics, etc. These papers would be more appropriate for the Transactions of the Society which is concerned with these applications. 3) Papers describing magnetic materials and magnetic device physics. These papers would be more appropriate for the IEEE Transactions on Magnetics. 4) Papers on machine theory. These papers would be more appropriate for the IEEE Transactions on Power Systems. While original papers of significant technical content will comprise the major portion of the Journal, tutorial papers and papers of historical value are also reviewed for publication.