用于电动汽车的集无线电力传输、车载充电器和辅助电源模块于一体的充电器

IF 6.5 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuanchao Wu;Wenbin Pan;Wei Xu;Ronghuan Xie;Yizhan Zhuang;Xingkui Mao;Yiming Zhang
{"title":"用于电动汽车的集无线电力传输、车载充电器和辅助电源模块于一体的充电器","authors":"Yuanchao Wu;Wenbin Pan;Wei Xu;Ronghuan Xie;Yizhan Zhuang;Xingkui Mao;Yiming Zhang","doi":"10.1109/TPEL.2024.3518499","DOIUrl":null,"url":null,"abstract":"The rapidly developing electric vehicles (EVs) calls for improvement in the charging system for the high-voltage (HV) and low-voltage (LV) batteries in EVs. In the conventional EV charger, wireless power transfer (WPT), onboard charger (OBC), and auxiliary power module (APM) are three separate structures. This article proposes an integrated charger for WPT, OBC, and APM by sharing power conversion stages with the advantages of cost effectiveness and high-power density. The transformer of OBC can be seen as two strongly coupled coils, and the secondary-side coil can be loosely coupled with the transmitting coil of the WPT system, serving as a receiving coil. A transformer can be employed on the receiving side to integrate the APM with WPT. In this way, the receiving coil, the compensation network, and the power electronics converter can be shared. The integrated structure can work in three modes. In the first mode (wireless charging mode) and the second mode (conductive charging mode), the utility delivers power to the HV and LV batteries simultaneously. In the third mode (HV-LV mode), the LV battery is charged by the HV battery through APM. An experimental prototype is implemented to validate the proposal.","PeriodicalId":13267,"journal":{"name":"IEEE Transactions on Power Electronics","volume":"40 4","pages":"6334-6344"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Integrated Charger of Wireless Power Transfer, Onboard Charger, and Auxiliary Power Module for Electric Vehicles\",\"authors\":\"Yuanchao Wu;Wenbin Pan;Wei Xu;Ronghuan Xie;Yizhan Zhuang;Xingkui Mao;Yiming Zhang\",\"doi\":\"10.1109/TPEL.2024.3518499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapidly developing electric vehicles (EVs) calls for improvement in the charging system for the high-voltage (HV) and low-voltage (LV) batteries in EVs. In the conventional EV charger, wireless power transfer (WPT), onboard charger (OBC), and auxiliary power module (APM) are three separate structures. This article proposes an integrated charger for WPT, OBC, and APM by sharing power conversion stages with the advantages of cost effectiveness and high-power density. The transformer of OBC can be seen as two strongly coupled coils, and the secondary-side coil can be loosely coupled with the transmitting coil of the WPT system, serving as a receiving coil. A transformer can be employed on the receiving side to integrate the APM with WPT. In this way, the receiving coil, the compensation network, and the power electronics converter can be shared. The integrated structure can work in three modes. In the first mode (wireless charging mode) and the second mode (conductive charging mode), the utility delivers power to the HV and LV batteries simultaneously. In the third mode (HV-LV mode), the LV battery is charged by the HV battery through APM. An experimental prototype is implemented to validate the proposal.\",\"PeriodicalId\":13267,\"journal\":{\"name\":\"IEEE Transactions on Power Electronics\",\"volume\":\"40 4\",\"pages\":\"6334-6344\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Power Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804007/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10804007/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着电动汽车的快速发展,对电动汽车的高、低压电池充电系统提出了更高的要求。在传统的电动汽车充电器中,无线电源传输(WPT)、车载充电器(OBC)和辅助电源模块(APM)是三个独立的结构。本文提出了一种共享功率转换阶段的WPT、OBC和APM集成充电器,具有成本效益和高功率密度的优点。OBC的变压器可以看作是两个强耦合线圈,二次侧线圈可以与WPT系统的发射线圈松散耦合,作为接收线圈。接收端可以使用变压器将APM与WPT集成在一起。通过这种方式,接收线圈、补偿网络和电力电子转换器可以共享。集成结构可以在三种模式下工作。在第一种模式(无线充电模式)和第二种模式(导电充电模式)中,本实用新型同时向高压和低压电池供电。在第三种模式(高压-低压模式)中,低压电池通过APM由高压电池充电。通过实验样机验证了该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Integrated Charger of Wireless Power Transfer, Onboard Charger, and Auxiliary Power Module for Electric Vehicles
The rapidly developing electric vehicles (EVs) calls for improvement in the charging system for the high-voltage (HV) and low-voltage (LV) batteries in EVs. In the conventional EV charger, wireless power transfer (WPT), onboard charger (OBC), and auxiliary power module (APM) are three separate structures. This article proposes an integrated charger for WPT, OBC, and APM by sharing power conversion stages with the advantages of cost effectiveness and high-power density. The transformer of OBC can be seen as two strongly coupled coils, and the secondary-side coil can be loosely coupled with the transmitting coil of the WPT system, serving as a receiving coil. A transformer can be employed on the receiving side to integrate the APM with WPT. In this way, the receiving coil, the compensation network, and the power electronics converter can be shared. The integrated structure can work in three modes. In the first mode (wireless charging mode) and the second mode (conductive charging mode), the utility delivers power to the HV and LV batteries simultaneously. In the third mode (HV-LV mode), the LV battery is charged by the HV battery through APM. An experimental prototype is implemented to validate the proposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Power Electronics
IEEE Transactions on Power Electronics 工程技术-工程:电子与电气
CiteScore
15.20
自引率
20.90%
发文量
1099
审稿时长
3 months
期刊介绍: The IEEE Transactions on Power Electronics journal covers all issues of widespread or generic interest to engineers who work in the field of power electronics. The Journal editors will enforce standards and a review policy equivalent to the IEEE Transactions, and only papers of high technical quality will be accepted. Papers which treat new and novel device, circuit or system issues which are of generic interest to power electronics engineers are published. Papers which are not within the scope of this Journal will be forwarded to the appropriate IEEE Journal or Transactions editors. Examples of papers which would be more appropriately published in other Journals or Transactions include: 1) Papers describing semiconductor or electron device physics. These papers would be more appropriate for the IEEE Transactions on Electron Devices. 2) Papers describing applications in specific areas: e.g., industry, instrumentation, utility power systems, aerospace, industrial electronics, etc. These papers would be more appropriate for the Transactions of the Society which is concerned with these applications. 3) Papers describing magnetic materials and magnetic device physics. These papers would be more appropriate for the IEEE Transactions on Magnetics. 4) Papers on machine theory. These papers would be more appropriate for the IEEE Transactions on Power Systems. While original papers of significant technical content will comprise the major portion of the Journal, tutorial papers and papers of historical value are also reviewed for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信